Performance and Tuning Guide:
Volume 1 - Basics

Adaptive Server Enterprise

12.5

DOCUMENT ID: 33621-01-1250-02
LAST REVISED: May 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in thisdocument is subject to change without notice. The software described herein is furnished
under alicense agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated inany form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Anayzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enterprise
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, Netlmpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit,
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Sol utions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, Power Script,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Designor, S-
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financia
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream,
Transact-SQL, Trandation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visua
Components, Visual Speller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. /01

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to therestrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

ADOUL THIS BOOK ...ttt ettt ettt ettt e ekt e e ettt e e e et e e e embe e e e anbeeeeaanbeeaeanneeaan XV
CHAPTER 1 OVEIVIBW eiiiiiiiiee ettt ettt e e st e e e e nnbae e e e e nnnnees 1
GOOd PEIfOIMANCEccoviieiiiee ettt e e e e e e e e e e naenes 1
RESPONSE tIME ... 1
TRrOUGNPUL ...t 2
Designing for performancecccccoovcvviveeiee i 2
TUNING PEMOIMANCE ...ciiiiiiiiiiiiiee et 2
TUNING EVEIS ... 3
Identifying system lIMitS ..o, 8
Setting tuNING gOaIS........cuuiiiiiiiiiiiie e 8
Analyzing performancCeccuvvviiie e 9
NOIMAl FOIMS ... 10
LOCKING .ttt 11
Special ConSIderationS..........cccvveeieeeiiiiciiieee e 11
CHAPTER 2 Networks and Performance........cocveveiviiiieiiniiice e 13
INEFOUCTION .t 13
Potential performance problemsccccvveevieeiiiiciiieece e, 13
Basic questions on network performancecccccceeviiinnen. 14
TeChNIQUES SUMMAIYuvviiiiiiiiiiiiiiiieie et 14
Using sp_sysmon while changing network configuration......... 15
How Adaptive Server uses the Networkccccoevivveiieeniiiiiinnn, 15
Changing network packet Sizescccccviiiiiiieiiiie s 16
Large versus Default packet sizes for user connections................ 16
Number of packets is important............cccccovviiviieineeniniiiieeenn. 17
Evaluation tools with Adaptive Server..........cccccccvveeeeeeicivinnnn. 17
Evaluation tools outside of Adaptive Server...........ccccccoeeuveeee. 18
Server-based techniques for reducing network traffic............. 18
Impact of other server activities............ccccvvveeiee i, 19
Single user versus multiple USers..........ccccceeeeeiiiciiiieee e 20
Improving network performance...........oocvvvveiiee e 20
Isolate heavy NEtWOrK USErS........coovuviiieiieeiniiiiiieee e 20

Contents

Set tcp no delay on TCP Networkscvvvvviiiiiiiieneee s, 21
Configure multiple network listenerscccocvvviviieeniiniiinnen, 22
CHAPTER 3 Using ENgines and CPUScvviiiieeiiiiiiieeeee e 23
Background CONCEPLS.......covviiiiiiiieiiiiiiiiiiiee e 23
How Adaptive Server processes client requests..................... 24
Client task implementationccccvvveeieee e, 25
Single-CPU process MOodeluuuvieeeiiiiiiiiiiie e 26
Scheduling engines to the CPUcccccceeevviiiiieenee e, 26
Scheduling tasks to the enginecccccceeeeeiiiiiveee e, 28
Execution task scheduling...........cccccvvviiiiieiiiiiiic e, 29
Adaptive Server SMP process modelcccvveeviieiniiiiiiiiiieneeennns 31
Scheduling engines to CPUS..........cccuviiiiiei i 32
Scheduling Adaptive Server tasks to engines.........cccccoveuveeee. 32
Multiple Network engines........ccccccovvvviieeiieeiiiie e, 33
Task priorities and run QUEUEScoovvuviiieiieei e 33
Processing SCENAIOuuvviiieeeiiiiiiiiiee et 34
Housekeeper task improves CPU utilization............cccccceevivvvvnennn. 35
Side effects of the housekeeper taskccccvvvevveeeiiiiciinnnen, 35
Configuring the housekeeper task..........ccccceeevviiiiieeee e, 36
Measuring CPU USAQEcuuvvirieeeeiiiiiiiiiee e e e sssiinreeaa e e e e ssinnneeeeas 37
Single-CPU mMachinesc.vvvvvieeiiiiiiiiiee e 37
Determining when to configure additional engines.................. 39
Taking engines offline ... 40
Enabling engine-to-CPU affinityccccvvveeiiiiii i, 40
Multiprocessor application design guidelines...........cccccccovvvvvveennnn. 42
CHAPTER 4 Distributing Engine RESOUICEScc.uvviiiiiiiieiiiiiiiiiiiiieeeeeeee e 45
Algorithm for successfully distributing engine resources 45
Algorithm guUIdeliNeScoeiiiiiiiiiiiie e 48
Environment analysis and planning...........cccceceeeeiiiiiiienneennn, 49
Performing benchmark testsccccccveeeeiiiiiiiieee e, 51
Setting QOAIS......ocviiieiei et 52
Results analysis and tuning..........cccccvvvveeieeiiiiciiieeeee e, 52
Monitoring the environment over time...........cccccceeeeeeeiiiieeenn. 53
Manage preferred acCess t0 reSOUICES.eeeruerererereeeaeeeaeeeeeees 53
Types Of EXECULION CIASSESccceeeieiiiiiiiee et a e 54
Predefined execution ClassSes...........cccceevvieieiiiien v 54
User-Defined execution ClasSes.........ccccovvvvveeiiieieeiieee e 54
Execution class attributesccccveiviiiieiiiiiec e 55
BaSe PrIOMILY .t 56
TIME SHICE .o 56
Task-to-engine affinityccoovveeeiiiiniiii s 57

Contents

Setting execution class attributes............ccocccvvveeiie e 58
AsSigNINg eXeCUtioN ClaSSEScc.vvvevveeeiiiiiiiieeiee e seiiireeeaae 58
Engine groups and establishing task-to-engine affinity 59
How execution class bindings affect scheduling 61

Setting attributes for a session ONlycccevvvveeiiiiiiiiiiie e, 63

Getting INformation........c..evviii i 63

Rules for determining precedence and SCOPE..........ccccceevvviivvvreennn. 64
Multiple execution objects and ECScccccccvveiiiiiiiiiiennnnn, 64
Resolving a precedence conflict..........cccccoovviiiiiiinniiiiniiiiiennn. 67
Examples: determining precedence............ccccvvvvveeeeeeicivvvenennn. 67

Example scenario using precedence rulescccccceeeeeicivvnennennn. 69
PlANNING ...ocooiiiiiiiiiee e 70
(7] 0170 [0 =1 1 o] o SR RRUPR 71
Execution characteristiCs...........cocciiiiiiiiiiii e, 72

Considerations for Engine Resource Distribution 73
Client applications: OLTP and DSScccccoviiiiiiiieeen i, 73
Adaptive Server logins: high-priority USers..........cccccvvieeeiinnns 74
Stored procedures: “hot SPOLS”.......covviiiiiiiieee e 74

CHAPTER 5 Controlling Physical Data Placement...........ccccccciiiiiniiiiiininnenn. 75

Object placement can improve performancecccccvvveeeevvninnnee. 75
Symptoms of poor object placement.............occcvvveevieeeiiniinnnnn. 76
Underlying problems ..o 77
Using sp_sysmon while changing data placement.................. 77

Terminology and CONCEPLSuuvvieeiiiiiiiieiei e e e e e 78

Guidelines for improving 1/O ierformance.........ccccccoeevvviveeeeeeennnnen, 78
Spreading data across disks to avoid I/O contention 79
Isolating server-wide I/O from database I/O...........ccccccuvvveeen... 80
Keeping transaction logs on a separate disK..............cccuvveeee... 81
Mirroring a device on a separate disKcccceeeeeeiniiiiiieennnn. 82

Creating objects 0N SEgMENTS..........eeeviiiiiiiiiiiiiiee e 83
USING SEOMENTSuviiiieiiiiiiiiiieie et e e e 84
Separating tables and iNndexesccccccee i 84
Splitting large tables across deviCescccccovvviviiiieeeeiiiiinns 85
Moving text storage to a separate device..........ccccceevvvirvrrennnn. 85

Partitioning tables for performancecccccoovviiiiiininniiiiieeenn, 85
(O ET=T g (= 1 K] o L= T =] [0 R 86
Partitioned tables and parallel query processing..................... 87
Improving insert performance with partitions...............ccceee..... 88
Restrictions on partitioned tablesccccoccvvviveeeeeeeiiciiieen. 89
Partition-related configuration parameterscccccceevvvveen.n. 89
How Adaptive Server distributes partitions on devices 89

Space planning for partitioned tables............cccccooviiiiiinnn, 90
Read-only tablesoocuiiiiiiiiii 91

Contents

Read-mostly tables..........ccccceiiiiiiiii 92
Tables with random data modification..............cccoeceeiiievennnne 92
Commands for partitioning tablescccoocviieeiieiiii s 93
alter table...partition SYNtaXccccccvvveerieeesiiciiieeee e 93
alter table...unpartition SyntaX..........cccvverieeiiiiiiiieenee e, 94
Changing the number of partitionscccccccvvvieeeeeeiiciviennn. 94
Distributing data evenly across partitions..............ccccecvvvveen... 95
Using parallel bcp to copy data into partitions.............ccceee...... 97
Getting information about partitionscccccccvvvvveeee e, 98
Using bcp to correct partition balance............ccccccceeeiviiiiiiennn. 99
Checking data distribution on devices with sp_helpsegment 101
Updating partition StatiStiCScccvvveerieeiiiiiiiiieeee e, 103
Steps for partitioning tables..........cuvvviieiiiii 104
Backing up the database after partitioning tables 104
Table dOES NOt EXIST.......eveiiiiiei i 104
Table exists elsewhere in the databasecccceevieeene 106
Table exists on the segmentcccceeviiiiiiiieee e, 107
Special procedures for difficult situations.............ccccccvvvivieeeennnns 111
Clustered indexes on large tables..........ccccceeevvciiiiieeee e, 111
Alternative for clustered indexesccccoceeeviiieeniiieee i, 112
Problems when devices for partitioned tables are full.................. 115
Adding disks when devices are fullccccceeeeiiiiiiiiiinnnnn, 115
Adding disks when devices are nearly full.............cocovvvveeeen. 117
Maintenance issues and partitioned tables...........ccccccovviiiiiennnnn. 118
Regular maintenance checks for partitioned tables 118
CHAPTER 6 Database DeSigNcocuiii i 121
BaSIC UESIGN ..oiiiiiiiiiiiiei s 121
Physical database design for Adaptive Server...........cccc....... 122
Logical Page SizZEeS........cccvvieeiiiiiiiiiiee e 122
NOMALIZALIONceiiiiiiiei e 123
Levels of normalization.............cccceiiiiieeiiiiiee e 123
Benefits of normalizationcccoociiiiiiii e 123
First Normal FOImMoooiiiiiie e 124
Second Normal FOrM ... 125
Third Normal FOImM ... 126
Denormalizing for performance..........ooccvvveviieiiiiiiiicene e, 128
RISKS...ee ettt 129
Denormalization iINPUL..........cooi i 130
TECHNIQUEScciiiiiiiiiie e 131
SPIttiNg tabIES ... 133
Managing denormalized data...........ccccceeeviiiiiiieeee e, 135
0L g o R (o o =1 £ SRR 136
Using application 10giC........cceeeiiiciiiiiieee e 136

Vi

Contents

Batch reconcCiliationcccooiiiiiiiiiieceee e 137
CHAPTER 7 (D U= B (o] =T | =R 139
Performance gains through query optimization................ccc..o..... 139
Query processing and page readscccccvveeeeeeiiivnieeeeeeennnns 140
AdapLiVE SEIVEN PAJES.....uvviiiiiieeiiiiiiieiie e et aa e 141
Page headers and page SiZeS.......ccccccevviviiiviiiieee s 142
Varying logical page SiZeS........ccccuvveviieiiiiiiiiiiiiee i 142
Data and iNdeX PAJESuvveeriieeiiiiiiiiiiee e 143
Large Object (LOB) PAgEScoovcuvivierieeiiiiiiiieiee e 143
EXIENES ooeiiiiii e 144
Pages that manage space allocationcccccvvvveeeeviiciinnennnnn. 145
Global allocation Map PagEScevveeeviiiciriieeriee e isiiiieeeeaaen 145
AllOCALION PAGEScocviieiiiee et 146
Object allocation Map PAGESueevveeeeiiririiiiriee e iesiiireeeaaens 146
How OAM pages and allocation pages manage object storage 146
Page allocation keeps an object’s pages together 147
sysindexes table and data access..........ccccccceeeiviiiiiiiiieneeenns 147
SPACE OVEINEAUS ...c.eeeiiiiiiiiiee e 148
Number of columns and Size..........ccccovvveiiieie i 149
Number of rows per data page........cccceeeevviiiiiieeeeeiiniiiiieeenn, 153
Maximum NUMDEIScoooiiiiiiiie e 154
Heaps of data: tables without clustered indexes............ccccuveeee... 155
Lock schemes and differences between heaps 155
Select operations 0N heaps.......cccccvveeeviiciiiieee e 156
Inserting data into an allpages-locked heap table.................. 157
Inserting data into a data-only-locked heap table.................. 158
Deleting data from a heap tablecccoccivvvveeieieiiiiiieen. 158
Updating data on a heap tableccccccoooviiiiiiiiee e, 159
How Adaptive Server performs 1/O for heap operations 161
Sequential prefetch, or large I/Occcvvvveeiiiiiiiiiiiiieeees 161
Caches and object bindiNgScccvvvieiiieiii e 162
Heaps, 1/0, and cache strategies...........cccocvvvvieeeieiiniiinneennn. 162
Select operations and cachingcccccvvvvieeeiiniiiiiiiiee s 164
Data modification and cachingccccccoovviiiiiieiiiiniiiiinennn. 165
Asynchronous prefetch and I/0 on heap tables...........cccccveeeeen. 167
Heaps: Pros and CONSccvvviiiiee e e e e seaaaaa s 168
MaintaiNing NEAPSvvviiiiiiiiiiiie e 168
Y =3 1 g ToTo TSP 169
Transaction log: a special heap table............ccccovvvveeiiicciiiennn, 170
CHAPTER 8 Indexing for Performance ... 171
How indexes affect performance...........cccccceeeeiiiiiiiiiee e, 171

Vii

Contents

CHAPTER 9

viii

Detecting indexing ProblemSooviiiiiiiiiii e 172
Symptoms of POOr INAEXINGccvieeviiiiiiiiiiiee e 172
Index limits and reqUIreMENtScoovvuriieerieeeniiiiiee e 175
ChOOSING INAEXES...ciiiiiiiiiiiiie et 176
Index keys and logical KeYsS..........ccccvvveeieeiiiiciiiieeie e, 177
Guidelines for clustered INAEXEScceeeriiiereiiiieeeiiieeee 177
Choosing clustered iINAEXEScccceviiciiiiieiee i 178
Candidates for nonclustered iNndexes..........ccccovceeeeiiieeeennne 178
Other indexing guidelines..........cccceevviiiiiiiiie e 179
Choosing nonclustered iNAEXESccuvveevieeeviiiiiiieniee e 180
Choosing composite INAEXESooccvvvviieieeiiiiiiiiieeee s 181
Key order and performance in composite indexes................ 181
Advantages and disadvantages of composite indexes 183
Techniques for chooSING INAEXES.........eeeviieiiiiiiiiieiieee e 184
Choosing an index for a range qUerycccccoovvvvviieeeeeeniiiinns 184
Adding a point query with different indexing requirements.... 185
Index and statistics MainteNanCecccceveveeeeiiiieee e 187
Dropping indexes that hurt performance..............ccccccvvvveen.. 187
Choosing space management properties for indexes........... 187
Additional iNdexing tiPScovvviieee i 188
Creating artificial COlUMNSccoieeiiiiiiiiiiice e 188
Keeping index entries short and avoiding overhead 188
Dropping and rebuilding iNndeXes.........cccccouvvivieeeieeiniiiiineenn. 189
HOW INAEXES WOTK ..ottt 191
TYPES Of INABXES ...ttt 192
INAEX PAGES ... ettt 192
INAEX SIZE....eeiiiiiiee e 194
Clustered indexes on allpages-locked tables............ccccvvevieeennnns 194
Clustered indexes and select operationsccccceeeeeeeinnnns 195
Clustered indexes and insert operations............ccccceeeeeeeinnnns 196
Page splitting on full data pagesccccccevvvvvvieeeeeeeeiciiieenn. 197
Page splitting on index pagescccccceeeeeviiiiiieeee e 199
Performance impacts of page splittingccccceeevvecvvineneennn. 199
OVEIfIOW PAGES .. .evviiiiiii ittt e 200
Clustered indexes and delete operations............ccccceeeeviinnnnns 201
NoNCIUStEred INAEXES........oiiiiiieiiiiiee e 203
Leaf pages revisited ... 204
Nonclustered iNdeX StrUCTUIe...........cocvvveiiiieie e 204
Nonclustered indexes and select operations...............c......... 206
Nonclustered index performancecccoccvvveveeeeiiniiinieeenn. 207
Nonclustered indexes and insert operationsccuvvee... 207
Nonclustered indexes and delete operations.............cc......... 208
Clustered indexes on data-only-locked tables....................... 210

Contents

INAEX COVEIING ...cii ittt ee ettt e e e e e ettt e e e e s e r e e e e s e snarraeeaaeeas 210
Covering matching indeX SCaNSccccvvvveeeeeeiiciiiiieeee e 211
Covering nonmatching index Scanscccccceevvciviiieeeeeenns 212

Indexes and CACNINGc.oooviiiiiiiiie e 213
Using separate caches for data and index pages 214
Index trips through the cache...........ccccooeiiiiicc e, 214

CHAPTER 10 Locking Configuration and TUNINGooooiiiiiiiiiiiiiiiiieeeeeeeeeeee 217

Locking and performancCe............ccceevviiiiieeniee e 217
Using sp_sysmon and sp_object_statS..........ccccccveeeeiiiinnen. 218
Reducing 10Ck CONtENLIONccoviiviiiiiiiiiiieee e 218
Additional locking guidelinesccccceeviviiiiieiie e, 221

Configuring locks and lock promotion thresholds......................... 222
Configuring Adaptive Server’s lock limit.............ccccvvvveeeennns 222
Configuring the lock hashtable.............ccccccceeiiiiiiiii s 224
Setting lock promotion thresholdscccccceeeviiiiiiiiiee e, 225

Choosing the locking scheme for a tablelccccovvvieeennns 230
Analyzing existing applications...........cccoevvvvviiiieeiiiiiiiiieeeeenn, 231
Choosing a locking scheme based on contention statistics .. 232
Monitoring and managing tables after conversion................. 233
Applications not likely to benefit from data-only locking........ 234

CHAPTER 11 Using Locking CommandsS.........coooiiiiiiiiiiiiiieeeeeeeee e 237

Specifying the locking scheme for a table..............cocccviiiiiinnnnn, 237
Specifying a server-wide locking schemeccccccceeeiins 237
Specifying a locking scheme with create table...................... 238
Changing a locking scheme with alter table.......................... 239
Before and after changing locking schemescccveee..... 239
Expense of switching to or from allpages locking.................. 241
Sort performance during alter table...........ccccccoeviiiiieeeeenns 242
Specifying a locking scheme with select into 242

Controlling isolation lIeVelS.............cccciiiieii i, 243
Setting isolation levels for @ Sessionccccccvvviiiiieiineennnns 243
Syntax for query-level and table-level locking options 244
Using holdlock, noholdlock, or shared............ccccvvvveeeeiniinnnee. 244
Using the at isolation ClauSe.............occvvveeriee i 245
Making locks more restrictiveccceeeveeiviiiiiieeeeee e, 246
Making locks 1SS restriCtiveccvvvveeiee i, 247

Readpast I0CKING.........couiiiiiiiiiiie e 248

Cursors and lOCKINGocvvveieee e 248
Using the shared Keyword..........cccccooocvvvieiiee i 249

Additional locking commands...........cccceeveeeiiiiiiiieeeee e 251
lock table Command...........cceiiiiiiiieiiee e 251

Contents

LOCK tIMEOULS ... 251
CHAPTER 12 Reporting on LOCKScooiiieee e 253
LOCKING TOOIS ...oeoeiiiiiieeeee e 253
Getting information about blocked processes....................... 253
ViIieWING 1OCKS.....cciiiiiiiiiiiiic e 254
ViIieWING 1OCKS......ciiiiiiiiiiiic e 256
Intrafamily blocking during network buffer merges................ 257
Deadlocks and CONCUITENCYvvieeeeeiiiiiiiiee e e e eeiveeee e e e e e seaaaeeeas 258
Server-side versus application-side deadlocks...................... 258
Server task deadlOCKSccueeiiiiiiiiiiie e 259
Deadlocks and parallel queriescccccvviiiiieeniee i, 260
Printing deadlock information to the error 10g...........cccueeee.... 261
Avoiding deadlockscccoiiiiiiiiiiie e 262
Identifying tables where concurrency is a problem 264
Lock management reportingceevvviviieerieenniniiiieee e 266
CHAPTER 13 Setting Space Management Propertiescccccvvvveveeeeeeeeeeinnnns 267
Reducing index MaintenanCeoovuviviereee i 267
Advantages of using fillfactorccccccoviiiviieieeiiiieeeeen 268
Disadvantages of using fillfactor...............cccccvievieiiiiinnnnn. 268
Setting fillfactor valuesccccceeeeeiiiiiiiiee e, 269
fillfactor eXamples........ccovvvvie i 270
Use of the sorted_data and fillfactor options...............cc.cce..... 273
Reducing row forwardingcceeeeeeiiiiiiiiee e 273
Default, minimum, and maximum values for exp_row_size .. 274
Specifying an expected row size with create table................ 274
Adding or changing an expected row Size............ccccvveeeeeenn. 275
Setting a default expected row size server-wide................... 276
Displaying the expected row size for atable............ccccccee... 276
Choosing an expected row size for atablecccccovnnnnee. 276
Conversion of max_rows_per_page to exp_row_size........... 278
Monitoring and managing tables that use expected row size 278
Leaving space for forwarded rows and inserts..............cccccvvveee... 279
Extent allocation operations and reservepagegap 279
Specifying a reserve page gap with create table................... 281
Specifying a reserve page gap with create index.................. 282
Changing reservepagegapueeeu e irurrreerieeeniniiieeeeee s e 282
reservepagegap eXamplesccccccvviiiiiieiiee i 283
Choosing a value for reservepagegapcoccvvvveveeeeeiniivnnnnn. 284
Monitoring reservepagegap Settingsccccvvveeeeriiiiiineeenenn. 284
reservepagegap and sorted_data options to create index.... 285
Using max_rows_per_page on allpages-locked tables................ 287

Contents

CHAPTER 14

Reducing 10k CONtENLIONcviveiiiiiiiiieeeee e 288
Indexes and Max_rows_Per_Pagec.ccceeuvvrereeeeeessinnnreneeens 289
select into and Max_rows_per_pPage.......ccccceeeeeeiiuvrneeeeeeannnns 289
Applying max_rows_per_page to existing data.................... 289
Memory Use and Performanceccccccciiiiiiiiiiiiiiiiieieeeeee 291
How memory affects performancecccccooviiiiiiiiiiiiniiiienennn, 291
How much memory to configure ..o, 292
Caches in Adaptive SEIVET.........oooiviiiiiiiee e 295
Procedure CaCheocccveiiiiiiiiiiec e 296
Getting information about the procedure cache size............. 296
Procedure cache Sizingcccccceeviiciiiiieiie e 297
Estimating stored procedure Siz€.........ccccoecvvvivveeeeeeiiivnnnnnnnn. 298
DAta CACNE ...t 298
Default cache at installation time............ccocceiiiieiiiiieeeen. 299
Page aging in data cache............ccccvveviiiiiii e, 299
Effect of data cache on retrievals..........ccccceevieiiniiencennnn. 300
Effect of data modifications on the cache................cccceeeee. 301
Data cache performancecccocuvveeeiieiiiniiiiieeeee e 302
Testing data cache performance...........ccccvvveveeiiiiiiiiieeneennn, 302
Configuring the data cache to improve performance 303
Commands to configure named data caches........................ 306
Tuning NAamMed CACNESccciviiiiiiiiiiiiee e 306
Cache configuration goals..........ccccceeeeeiiiciiiiieiee i, 307
Gather data, plan, and then implement.............ccccccvvvveeeeenn. 308
Evaluating cache NEEdScccovvcuvivieeieee e 309
Large I/O and performanceccccvvevveeeiicciiiiieie e, 309
Reducing spinlock contention with cache partitions.............. 312
Cache replacement strategies and policies...........cccccceeeeennnns 312
Named data cache recommendationscccceevviiereriiienenns 314
Sizing caches for special objects, tempdb, and transaction logs .
316

Basing data pool sizes on query plans and I/O 320
Configuring buffer wash sizeccccccoviicciien 323
Overhead of pool configuration and binding objects 323
Maintaining data cache performance for large /Occccce.... 325
Diagnosing excessive 1/O COoUNtScccccvvvevveeeeeeiiiiiieeennn. 325
Using sp_sysmon to check large I/O performance................ 326
SPEEd Of FTECOVEIY ..oiiiiii ittt a e 326
Tuning the recovery intervalccccccev i 327
Effects of the housekeeper task on recovery time 328
Auditing and performanceccccovcuvieeeiee e 328
Sizing the audit QUEUEoceviiiiiiee e 328
Auditing performance guidelinesccccvvvviieeeiiniiiiiinennn, 329

Xi

Contents

CHAPTER 15 Determining Sizes of Tables and Indexescccccviiiiieeeennnn. 331
Why Obiject Sizes Are Important to Query Tuningccccveeeee... 331
Tools for Determining the Sizes of Tables and Indexes............... 332
Effects of Data Modifications on Object Sizesccoevvvvveeeennn. 333
Using optdiag to Display Object Sizesccccccceevvvviviiiieeeieeiine, 333

Advantages of optdiag.........cccceevvriiiieeeiiiiiiiie e 334
Disadvantages of optdiag..........c.cccvvvvverieeiiiiiiiiieeee e 334
Using sp_spaceused to Display Object Size.........cccccevveeeiiecirnnnn. 334
Advantages of Sp_SpPaceuSEedccccceevuvvriieeeeeeiiiiiiieeeeeen 335
Disadvantages of sp_spaceusedccccvvvvvveeesiiicivnnnnnnnn. 336
Using sp_estspace to Estimate Object Sizeccccceeeviiiiinnenn. 336
Advantages of Sp_eStSPaCec.eeevvveiviiiiiiiiiiee e 337
Disadvantages of Sp_estSpaceccccccevvviiviviienee e, 338
Using Formulas to Estimate Object Size..........cccoovvviviiiirieeeniiinnns 338
Factors That Can Affect Storage Size........ccccccceevviiiiiiieennn. 338
Storage Sizes for Datatypes......cceevvivuiiiieiiee e 339
Tables and Indexes Used in the Formulas...........ccccccoeeeeen. 341
Calculating Table and Clustered Index Sizes for Allpages-Locked
TADIES . 341
Calculating the Sizes of Data-Only-Locked Tables............... 347
Other Factors Affecting Object Size.........ccccoecvvvviveeeeeeicnnn, 352
Very SMall ROWSoooiiiiiei ettt 354
LOB PAJES ...ciiiiiiiiiiiiiiiieiieeeeeeeeee ettt 354
Advantages of Using Formulas to Estimate Object Size....... 355

Disadvantages of Using Formulas to Estimate Object Size.. 355

CHAPTER 16 Maintenance Activities and Performance.............ccoccuiiiineneen. 357
Running reorg on tables and indexesccooocvvvveeeeeiniiiiiieeenn. 357
Creating and maintaining INAEXEScccccovviiiiiiieiee e 358

Configuring Adaptive Server to speed SOrting..............cuue... 358
Dumping the database after creating an index...................... 359
Creating an index on sorted dataccccceeeevcvvveieeeeeeesnnnee, 359
Maintaining index and column statistiCScccccccoecvvveeeeennn. 360
Rebuilding iNdEXESvvviiieee e 361
Creating or altering a database..........ccccccccevivcviiiiiie e, 362
Backup and rECOVETYcccoiiiiiiiiee ettt 364
Local Backups ... 364
Remote DaCKUPSooviviiiieiiiiiie e 364
ONliNE DACKUPS......uviiiiiiiiiiiiiiiiie et 365
Using thresholds to prevent running out of log space........... 365
DUMP SHAPING vt 365
MiNimMizing reCOVErY tIMe......c..cooviiiiiiiiiie i 365
RECOVEINY OFUEN ...uviiiieei it 366
BUIK COPY vttt ee s 366

Xii

Contents

Parallel BUIK COPY ..cooooeeiiiiiiiee e 366
Batches and bulk COPYuvvvvieiiiiiiiiiee e 367
SIOW BUIK COPY oo 367
Improving bulk copy performanceccoccvvivviiiiiiiiiiiieenn. 367
Replacing the datain alarge table...........cccvvveeiiiiiiiiiiiieennn. 368
Adding large amounts of data to a table...............occvvvveenennn, 368
Using partitions and multiple bulk copy processes................ 369
IMpacts 0N Other USErS........ccoccviiiiiieiii e 369
Database consistency checkerocccvveeviiiiiiiiiii e, 369
Using dbcc tune (CleanuP)ooocvvvieeiiee st e e 369
Determining the space available for maintenance activities 370
Overview of space requIreMeNtS..........cccvvveeeeeeeiicvieeeeeeeeenns 370
Tools for checking space usage and space available........... 371
Estimating the effects of space management properties 373
If there is not enough SPacecccvvveeieeci i, 374

Xiii

Contents

Xiv

About This Book

Audience

How to use this book

Thismanual isintened for database administrators, database designers,
developers and system administrators.

Note You may want to use your own database for testing changes and
queries. Take a snapshot of the database in question and set it up on atest
machine.

Thismanual would normally be used to finetune, troubleshoot or improve
the performance on Adaptive Server. The Performance and Tuning Guide
is divided into three books:

* Volumel - Basics

* Volume 2 - Optimizing and Abstract Plans

* Volume 3 - Tools for Monitoring and Analyzing Performance
The following information is covered:

Volume 1- Basics

Chapter 1, “Overview” describes the major components to be analyzed
when addressing performance.

Chapter 2, “Networks and Performance” provides a brief description of
relational databases and good database design.

Chapter 3, “Using Engines and CPUS" describes Adaptive Server page
types, how datais stored on pages and how queries on heap tables are
executed.

Chapter 4, “ Distributing Engine Resources’ providesinformation on how
indexes are used to resolve queries.

Chapter 5, “Controlling Physical Data Placement” explains the process
for query optimization, how statistics are applied to search arguments and
joinsfor queries.

Chapter 6, “Database Design” describes how Adaptive Server accesses
tablesin queries that only involve a single table, and how the costs are
estimated for various access methods

XV

XVi

Chapter 7, “Data Storage” describes how Adaptive Server accesses tables
during joins and subqueries and how the costs are determined

Chapter 8, “Indexing for Performance” describes performance issues with
CUrsors.

Chapter 9, “How Indexes Work” provides guidelines and examples for
choosing indexes.

Chapter 10, “Locking Configuration and Tuning” providesan in-depth ook at
the optimization of parallel queries

Chapter 11, “Using Locking Commands” introduces the concepts and
resources required for parallel query processing

Chapter 12, “Reporting on Locks” describes the use of parallel sorting for
queries and for creating indexes.

Chapter 13, “ Setting Space Management Properties’ presents an overview of
query tuning tools and describes how these tools can interact

Chapter 14, “Memory Use and Performance” describes different methods for
determining the current size of database objectsand for estimating their future
size.

Chapter 15, “Determining Sizes of Tables and Indexes,” describes different
methods for determining the current size of database objects and for estimating
their future size.

Chapter 16, “Maintenance Activities and Performance” explains the
commands that provide information about query execution.

Volume 2 - Optimizing and Abstract Plans

Chapter 17, “Adaptive Server Optimizer” explains the process of query
optimization, how statistics are applied to search arguments and joins for
queries.

Chapter 18, “ Advanced Optimizing Tools” describesadvanced tool sfor tuning
query performance

Chapter 19, “Query Tuning Tools” presents an overview of query tuning tools
and describes how these tools can interact.

Chapter 20, “Access Methods and Query Costing for Single Tables’ describes
how Adaptive Server accessestablesin queriesthat only involve onetable and
how the costs are estimated for various access methods.

About This Book

Chapter 21, “Accessing Methods and Costing for Joins and Subqueries’
describes how Adaptive Server accesses tables during joins and subqueries,
and how the costs are determined.

Chapter 22, “Parallel Query Processing” intoduces the concepts and resources
required for parallel query processing.

Chapter 23, “Parallel Query Optimization” provides an indepth look at the
optimization of parallel queries.

Chapter 24, “Parallel Sorting” describes the use of parallel sorting for queries
and creating indexes.

Chapter 25, “Tuning Asynchronous Prefetch” describes how asynchronous
prefetch improves performance for queries that perform large disk 1/0.

Chapter 26, “tempdb Performance Issues’ stresses the importance of the
temporary database , tempdb, and provides suggestions for improving its
performance.

Chapter 27, “Cursors and Performance” describes performance issues with
CUrsors.

Chapter 28, “Introduction to Abstract Plans’ provides an overview of abstravt
plans and how they can be used to solve query optimization problems.

Chapter 29, “Abstract Query Plan Guide” provides an introduction to writing
abstract plans for specific types of queries and to using abstract plans to detect
changes in query optimization due to configuration or system changes.

Chapter 30, “ Creating and Using Abstract Plans” describesthe commands that
can be used to save and use abstract plans.

Chapter 31, “Managing Abstract Planswith System Procedures’ describesthe
system procedures that manage abstract plans and abstract plan groups.

Chapter 32, “Abstract Plan Language Reference” describes the abstract plan
language.

Volume 3 - Tools for Monitoring and Analyzing Performance

Chapter 33, “Using Statistics to Improve Performance” describes how to use
the update statistics command to create and update statistics.

Chapter 34, “Using the set statistics Commands” explains the commands that
provide information about execution.

Chapter 35, “Using set showplan” provides examples of showplan messages.

XVil

Index

Related documents

XVili

Chapter 36, “ Statistics Tables and Displaying Statistics with optdiag”
describes the tables that store statistics and the output of the optdiag command
that displays the statistics used by the query optimizer.

Chapter 37, “ Tuning with dbcc traceon” explains how to use the dbcc traceon
commands to analyze query optimization problems.

Chapter 38, “Monitoring Performance with sp_sysmon™ describes how to use
a system procedure that monitors Adaptive Server performance.

The full index for all three volumesisin the back of Volume 3- Tools for
Monitoring and Analyzng Performance.

The following documents comprise the Sybase Adaptive Server Enterprise
documentation:

The release bulletin for your platform — contains last-minute information
that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document information
that was added after the release of the product CD, use the Sybase
Technical Library.

The Installation Guidefor your platform —describesinstallation, upgrade,
and configuration procedures for all Adaptive Server and related Sybase
products.

Configuring Adaptive Server Enterprise for your platform — provides
instructions for performing specific configuration tasks for Adaptive
Server.

What's New in Adaptive Server Enterprise? — describes the new features
in Adaptive Server version 12.5, the system changes added to support
those features, and the changes that may affect your existing applications.

Transact-SQL User’s Guide — documents Transact-SQL, Sybase's
enhanced version of the relational database language. This manual serves
as atextbook for beginning users of the database management system.
This manual also contains descriptions of the pubs2 and pubs3 sample
databases.

System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes instructions
and guidelines for managing physical resources, security, user and system
databases, and specifying character conversion, international language,
and sort order settings.

About This Book

Reference Manual — contains detailed i nformation about all Transact-SQL
commands, functions, procedures, and datatypes. This manual also
contains alist of the Transact-SQL reserved words and definitions of
system tables.

Performance and Tuning Guide — explains how to tune Adaptive Server
for maximum performance. This manual includes information about
database design issuesthat affect performance, query optimization, how to
tune Adaptive Server for very large databases, disk and cache issues, and
the effects of locking and cursors on performance.

The Utility Guide—documentsthe Adaptive Server utility programs, such
asisgl and bcp, which are executed at the operating system level.

The Quick Reference Guide — provides a comprehensive listing of the
names and syntax for commands, functions, system procedures, extended
system procedures, datatypes, and utilities in a pocket-sized book.
Available only in print version.

The System Tables Diagram —illustrates system tables and their entity
relationships in a poster format. Available only in print version.

Error Messages and Troubleshooting Guide — explains how to resolve
frequently occurring error messages and describes solutions to system
problems frequently encountered by users.

Component Integration Services User’s Guide — explains how to use the
Adaptive Server Component Integration Services feature to connect
remote Sybase and non-Sybase databases.

Javain Adaptive Server Enterprise—describeshow toinstall and use Java
classes as datatypes, functions, and stored procedures in the Adaptive
Server database.

Using Sybase Failover in a High Availability System— provides
instructions for using Sybase's Failover to configure an Adaptive Server
as acompanion server in ahigh availability system.

Using Adaptive Server Distributed Transaction Management Features—
explains how to configure, use, and troubleshoot Adaptive Server DTM
features in distributed transaction processing environments.

EJB Server User’s Guide — explains how to use EJB Server to deploy and
execute Enterprise JavaBeans in Adaptive Server.

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
providesinstructions for using Sybase’'s DTM XA interface with X/Open
XA transaction managers.

XixX

Other sources of
information

Sybase certifications
on the Web

XX

Glossary — defines technical terms used in the Adaptive Server
documentation.

Sybase jConnect for JDBC Programmer’s Reference — describes the
jConnect for JDBC product and explainshow to useit to access data stored
in relationa database management systems.

Full-Text Search Specialty Data Sore User’s Guide—describes how to use
the Full-Text Search feature with Verity to search Adaptive Server
Enterprise data.

Historical Server User’s Guide —describes how to use Historical Server to
obtain performance information for SQL Server and Adaptive Server.

Monitor Server User’s Guide — describes how to use Monitor Server to
obtain performance statistics from SQL Server and Adaptive Server.

Monitor Client Library Programmer’s Guide — describes how to write
Monitor Client Library applications that access Adaptive Server
performance data.

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

Technical Library CD contains product manuals and isincluded with your
software. The DynaText browser (downloadable from Product Manuals at
http://iwww.sybase.com/detail/1,3693,1010661,00.html) allowsyouto access
technical information about your product in an easy-to-use format.

Refer to the Technical Library Installation Guide in your documentation
package for instructions on installing and starting the Technical Library.

Technical Library Product Manuals Web site isan HTML version of the
Technical Library CD that you can access using a standard Web browser.
In addition to product manuals, you will find links to the Technical
Documents Web site (formerly known as Tech Info Library), the Solved
Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to Product
Manuals at http://www.sybase.com/support/manuals/.

Technical documentation at the Sybase Web site is updated frequently.

For the latest information on product certifications

1

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select Products from the navigation bar on the left.

About This Book

Conventions

Formatting SQL
statements

Font and syntax
conventions

3 Select aproduct name from the product list.
4 Select the Certification Report filter, specify atime frame, and click Go.
5 Click aCertification Report title to display the report.

For the latest information on EBFs and Updates

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

2 Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create a new account (afree
service).

3 Specify atime frame and click Go.
4 Select aproduct.

5 Click an EBF/Update title to display the report.

To create a personalized view of the Sybase Web site (including support
pages)

Set up aMySybase profile. MySybaseisafree servicethat allowsyouto create
apersonalized view of Sybase Web pages.

1 Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/

2 Click MySybase and create a MySybase profile.

This section describes conventions used in this manual.

SQL isafree-form language. There are no rules about the number of words
you can put on aline or where you must break aline. However, for readability,
all examples and syntax statements in this manual are formatted so that each

clause of a statement begins on anew line. Clauses that have more than one
part extend to additional lines, which are indented.

The font and syntax conventions used in this manual are shown in Table 1.0:

Table 1: Font and syntax conventions in this manual

Element

Example

Command names, command option names, utility — select
names, utility flags, and other keywordsarebold. sp_configure

Database names, datatypes, file names and path master database

names arein italics.

XXi

Element

Example

Variables, or words that stand for values that you
fill in, areinitalics.

sel ect
column_name

from
table_name

wher e
search_conditions

Parentheses areto be typed as part of the command.

conput e
row_aggr egat e
(

col um_nane

)

Curly bracesindicate that you must choose at least
one of the enclosed options. Do not type the braces.

{cash, check, credit}

Brackets mean choosing one or more of the
enclosed optionsis optional. Do not type the
brackets.

[anchovi es]

The vertical bar means you may select only one of
the options shown.

{di e_on_your_feet | Iive_on_your_knees
| live_on_your_feet}

The commameans you may choose as many of the
options shown asyou like, separating your choices
with commas to be typed as part of the command.

[extra_cheese, avocados, sour_creani

An ellipsis(...) means that you can repeat the last
unit as many times as you like.

buy thing = price [cash | check |
credit]

[, thing = price [cash | check |
credit]]...

You must buy at least one thing and give its price. You
may choose a method of payment: one of the items
enclosed in square brackets. You may also choose to buy
additional things: as many of them asyou like. For each
thing you buy, give its name, its price, and (optionally) a
method of payment.

e Syntax statements (displaying the syntax and all options for a command)
appear as follows:
sp_dropdevi ce [devi ce_nane]

or, for acommand with more options:

XXii

About This Book

Case

Expressions

sel ect col um_nane
fromtabl e_nane
where search_conditions

In syntax statements, keywords (commands) arein normal font and identifiers
arein lowercase: normal font for keywords, italics for user-supplied words.

» Examples of output from the computer appear as follows:
0736 New Age Books Boston MA
0877 Bi nnet & Hardl ey Washi ngton DC
1389 Al godata Infosystens Berkel ey CA

In this manual, most of the examples arein lowercase. However, you can
disregard case when typing Transact-SQL keywords. For example, SELECT,
Select, and select are the same. Note that Adaptive Server’s sensitivity to the
case of database objects, such astable names, depends on the sort order
installed on Adaptive Server. You can change case sensitivity for single-byte
character sets by reconfiguring the Adaptive Server sort order.

See in the System Administration Guide for more information.
Adaptive Server syntax statements use the following types of expressions:

Table 2: Types of expressions used in syntax statements

Usage Definition
expression Can include constants, literals, functions, column identifiers, variables, or

parameters

logical expression

An expression that returns TRUE, FALSE, or UNKNOWN

constant expression An expression that aways returns the same value, such as “5+3" or “ABCDE”

float_expr Any floating-point expression or expression that implicitly convertsto afloating
value

integer_expr Any integer expression, or an expression that implicitly convertsto an integer value

numeric_expr Any numeric expression that returns asingle value

char_expr Any expression that returns a single character-type value

binary_expression

An expression that returns asingle binary or varbinary value

Examples

Many of the examples in this manual are based on a database called pubtune.
The database schema is the same as the pubs2 database, but the tables used in
the examples have more rows: titles has 5000, authors has 5000, and titleauthor
has 6250. Different indexes are generated to show different features for many
examples, and these indexes are described in the text.

XXiii

If you need help

XXV

The pubtune database is not provided with Adaptive Server. Since most of the
exampl es show the results of commands such as set showplan and set statistics
i0, running the queriesin thismanual on pubs2 tableswill not producethe same
1/O results, and in many cases, will not produce the same query plans as those
shown here.

Each Sybaseinstallation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

chnapTeEr 1 Qverview

This chapter is an introduction to enhancing database performance.
Topic Page
Good performance 1
Tuning performance
Identifying system limits
Setting tuning goals
Analyzing performance

O 00| N

Good performance

Response time

Performance is the measure of efficiency for an application or multiple
applications running in the same environment. Performanceis usually
measured in response time and throughput.

Response time is the time that a single task takes to complete. The
response time can be shortened by:

¢ Reducing contention and wait times, particularly disk 1/0 wait times
¢ Using faster components
¢ Reducing the amount of time the resources are needed

In some cases, Adaptive Server is optimized to reduce initial response
time, that is, the time it takes to return the first row to the user.

Thisisespecially useful in applications where auser may retrieve several
rows with a query and then browse through them slowly with a front-end
tool.

Tuning performance

Throughput

Throughput refersto the volume of work completed in afixed time period.
There are two ways of thinking of throughput:

e Asasingle transaction, for example, 5 UpdateTitle transactions per
minute, or

e Astheentire Adaptive Server, for example, 50 or 500 server-wide
transactions per minute

Throughput is commonly measured in transactions per second (tps), but it
can also be measured per minute, per hour, per day, and so on.

Designing for performance

Most of the gainsin performance derive from good database design,
thorough query analysis, and appropriate indexing. The largest
performance gains can be realized by establishing agood database design
and by learning to work with the Adaptive Server query optimizer asyou
develop your applications.

Other considerations, such as hardware and network analysis, can locate
performance bottlenecks in your installation.

Tuning performance

Tuning is optimizing performance. A system model of Adaptive Server
and its environment can be used to identify performance problems at each

layer.

CHAPTER 1 Overview

Tuning levels

Figure 1-1: Adaptive Server system model

om
Q
< |
Application code g)
Open Client < Shared memory) |
Request = I
q % /
Response =z |
Access manager Data |
| cache)
i
<l Procedure !
cache I

Data tables

Transaction !
% Indexes log |
.{\. |

7O\

|
System

A mgjor part of tuning isreducing the contention for system resources. As
the number of usersincreases, contention for resources such as data and
procedure caches, spinlocks on system resources, and the CPU(s)
increases. The probability of locking data pages also increases.

Adaptive Server and its environment and applications can be broken into
components, or tuning layers, to isolate certain components of the system
for analysis. In many cases, two or more layers must be tuned so that they

work optimally together.

In some cases, removing aresource bottleneck at one layer can reveal
another problem area. On a more optimistic note, resolving one problem
can sometimes alleviate other problems.

For example, if physical 1/O rates are high for queries, and you add more
memory to speed response time and increase your cache hit ratio, you may
ease problems with disk contention.

The following information is on the tuning layers for Adaptive Server.

Tuning performance

Application layer

Database layer

Most performance gains come from query tuning, based on good database
design. This guide is devoted to an explanation of Adaptive Server
internals with query processing techniques and tools to maintain high
performance.

Issues at the application layer include the following:

» Decision Support System (DSS) and online transaction processing
(OLTP) require different performance strategies.

» Transaction design can reduce performance, since long-running
transactions hold locks, and reduce the access of other users to data.

* Relationa integrity requires joins for data modification.

* Indexing to support selects increases time to modify data.
e Auditing for security purposes can limit performance.
Options to address these issues include:

« Using remote or replicated processing to move decision support off
the OLTP machine

» Using stored procedures to reduce compilation time and network
usage
» Using the minimum locking level that meets your application needs

Applications share resources at the database layer, including disks, the
transaction log, and data cache.

One database may have 231 (2,147,483,648) logical pages. Theselogical

pages are divided among the various devices, up to the limit available on

each device. Therefore, the maximum possibl e size of adatabase depends
on the number and size of available devices.

The "overhead" is space reserved to the server, not available for
any user database. Itis:

* sizeof the master database,

e plussize of the model database,

e plussize of tempdb

CHAPTER 1 Overview

Adaptive Server layer

(12.0 and beyond) plus size of sybsystemdb,

plus 8k bytes for the server's configuration area.

Issues at the database layer include:

Developing a backup and recovery scheme
Distributing data across devices
Auditing affects performance; audit only what you need

Scheduling maintenance activities that can slow performance and
lock users out of tables

Options to address these issues include:

Using transaction log thresholds to automate |og dumps and avoid
running out of space

Using thresholds for space monitoring in data segments
Using partitions to speed loading of data

Placing objects on devices to avoid disk contention or to take
advantage of /O paralldl.

Caching for high availability of critical tables and indexes

At the server layer, there are many shared resources, including the dataand
procedure caches, locks, and CPUs.

Issues at the Adaptive Server layer are as follows:

The application types to be supported: OLTPR, DSS, or a mix.

The number of usersto be supported can affect tuning decisions—as
the number of usersincreases, contention for resources can shift.

Network loads.

Replication Server® or other distributed processing can be an issue
when the number of users and transaction rate reach high levels.

Options to address these issues include:

Tuning memory (the most critical configuration parameter) and other
parameters.

Tuning performance

Devices layer

Network layer

Deciding on client vs. server processing—can some processing take
place at the client side?

Configuring cache sizesand 1/0 sizes.

Adding multiple CPUs.

Scheduling batch jobs and reporting for off-hours.
Reconfiguring certain parameters for shifting workload patterns.

Determining whether it is possible to move DSS to another Adaptive
Server.

Thislayer isfor the disk and controllers that store your data. Adaptive
Server can manage up to 256 devices.

Issues at the devices layer include:

You mirror the master device, the devicesthat hold the user database,
or the database l0ogs?

How do you distribute system databases, user databases, and database
logs across the devices?

Do you need partitions for parallel query performance or high insert
performance on heap tables?

Options to address these issues include:

Using more medium-sized devices and controllers may provide better
1/O throughput than afew large devices

Distributing databases, tables, and indexes to create even 1/0 load
across devices

Using segments and partitions for 1/0 performance on large tables
used in parallel queries

Thislayer has the network or networks that connect users to Adaptive
Server.

Virtually all users of Adaptive Server accesstheir data via the network.
Major issues with the network layer are:

CHAPTER 1 Overview

e Theamount of network traffic

* Network bottlenecks

¢ Network speed

Options to address these issues include:

e Configuring packet sizesto match application needs
¢ Configuring subnets

e |solating heavy network uses

¢ Moving to a higher-capacity network

e Configuring for multiple network engines

e Designing applicationsto limit the amount of network traffic required

Hardware layer

Thislayer concerns the CPUs available.

Issues at the hardware layer include:

» CPU throughput

» Disk access: controllers aswell as disks

» Disk backup

* Memory usage

Options to address these issues include:

* Adding CPUsto match workload

» Configuring the housekeeper task to improve CPU utilization

» Following multiprocessor application design guidelines to reduce
contention

» Configuring multiple data caches

Operating — system layer

Ideally, Adaptive Server isthe only major application on a machine, and
must share CPU, memory, and other resources only with the operating
system, and other Sybase software such as Backup Server™ and Adaptive
Server Monitor™,

Identifying system limits

At the operating system layer, the major issues are;

Thefile systems available to Adaptive Server

Memory management — accurately estimating operating system
overhead and other program memory use

CPU availability and allocation to Adaptive Server

Optionsinclude:

Network interface

Choosing between files and raw partitions

Increasing the memory size

Moving client operations and batch processing to other machines

Multiple CPU utilization for Adaptive Server

Identifying system limits

There are limits to maximum performance. The physical limits of the
CPU, disk subsystems, and networks impose limits. Some of these can be
overcome by adding memory, using faster disk drives, switching to higher
bandwidth networks, and adding CPUs.

Given aset of components, any individual query has aminimum response
time. Given a set of system limitations, the physical subsystemsimpose
saturation points.

Setting tuning goals

For many systems, a performance specification developed early in the
application life cycle sets out the expected response time for specific types
of queries and the expected throughput for the system as awhole.

CHAPTER 1 Overview

Analyzing performance

When there are performance problems, you need to determine the sources
of the problems and your goalsin resolving them. The steps for analyzing
performance problems are:

1

Collect performance datato get baseline measurements. For example,
you might use one or more of the following tools:

» Benchmark tests developed in-house or industry-standard third-
party tests.

* sp_sysmon, asystem procedure that monitors Adaptive Server
performance and provides statistical output describing the
behavior of your Adaptive Server system.

See Performance and Tuning Guide: Tools for Performance
Satistics for information on using sp_sysmon.

» Adaptive Server Monitor provides graphical performance and
tuning tools and object-level information on 1/0 and locks.

* Any other appropriate tools.

Analyze the data to understand the system and any performance
problems. Create and answer alist of questions to analyze your
Adaptive Server environment. The list might include questions such
as

* What are the symptoms of the problem?
* What components of the system model affect the problem?

» Doesthe problem affect all users or only users of certain
applications?

* Isthe problem intermittent or constant?

Define system requirements and performance goals:
* How often isthis query executed?

* What responsetimeis required?

Define the Adaptive Server environment—know the configuration
and limitations at all layers.

Analyze application design—examine tables, indexes, and
transactions.

Analyzing performance

Normal Forms

10

6 Formulate a hypothesis about possible causes of the performance
problem and possible solutions, based on performance data.

7 Test the hypothesis by implementing the solutions from the last step:
e Adjust configuration parameters.
e Redesigntables.
e Add or redistribute memory resources.

8 Usethesametestsused to collect baseline datain step 1 to determine
the effects of tuning. Performance tuning is usually a repetitive
process.

If the actions taken based on step 7 do not meet the performance
requirements and goals set in step 3, or if adjustments made in
one area cause new performance problems, repeat this analysis
starting with step 2. You might need to reeval uate system
requirements and performance goals.

9 If testing shows that your hypothesisis correct, implement the
solution in your development environment.

Usually, several techniques are used to reorganize a database to minimize
and avoid inconsistency and redundancy, such as Normal Forms.

Using the different levels of Normal Forms organizes the information in
such away that it promotes efficient maintenance, storage and updating. It
simplifies query and update management, including the security and
integrity of the database. However, such normalization usually creates a
larger number of tableswhich may in turnincrease the size of the database.

Database Administrators must decide the various techniques best suited
their environment.

Use the Adaptive Server Reference Manual as aguide in setting up
databases.

CHAPTER 1 Overview

Locking

Adaptive Server protects the tables, data pages, or datarows currently
used by active transactions by locking them. Locking is needed in a
multiuser environment, since several users may be working with the same
data at the same time.

L ocking affects performance when one process holds locks that prevent
another process from accessing needed data. The process that is blocked
by thelock sleeps until the lock isreleased. Thisis called lock contention.

A more serious locking impact on performance arises from deadlocks. A
deadlock occurswhen two user processes each have alock on a separate
page or table and each wants to acquire alock on the same page or table
held by the other process. The transaction with the least accumulated CPU
timeiskilled and all of itswork isrolled back.

Understanding the types of locks in Adaptive Server can help you reduce
lock contention and avoid or minimize deadlocks.

See the System Administration Guide for an introduction on locking.

Locking for performance is discussed in Chapter 10, “Locking
Configuration and Tuning,” Chapter 11, “Using Locking Commands,”
and Chapter 12, “Reporting on Locks.”

Special Considerations

Databases are allocated among the devices in fragments called "disk
pieces', where each disk piece is represented by one entry in
master.dbo.sysusages. Each disk piece:

* Represents a contiguous fragment of one device, up to the size of the
device.

» Isaneven multiple of 256 logical pages.

One device may be divided among many different databases. Many
fragments of one device may be apportioned to one single database as
different disk pieces.

Thereis no practical limit on the number of disk piecesin one database,
except that the Adaptive Server's configured memory must be large
enough to accommodate its in-memory representation.

11

Analyzing performance

12

Because disk pieces are multiples of 256 logical pages, portions of odd-
sized devices may remain unused. For example, if adevicehas83 Mband
the server uses a 16k page size, 256 logical pagesis 256 * 16k =4 Mb.
Thefinal 3 Mb of that device will not be used by any database becauseit’s
too small to make a group of 256 logical pages.

The master device sets aside itsfirst 8k bytes as a configuration area.
Thus, to avoid any wasted space, acorrectly-sized master device should be
an even number of 256 logical pages*plus* 8 kb.

CHAPTER 2 Networks and Performance

This chapter discusses the role that the network playsin performance of
applications using Adaptive Server.

Introduction

Topic Page
Introduction 13
Potential performance problems 13
How Adaptive Server uses the network 15
Changing network packet sizes 16
Server-based techniques for reducing network traffic 18
Impact of other server activities 19

Usually, the System Administrator is the first to recognize a problem on

the network or in performance, including such things as:

Process response times vary significantly for no apparent reason.

Queriesthat return alarge number of rows take longer than expected.

Operating system processing slows down during normal Adaptive

Server processing periods.

Adaptive Server processing slows down during certain operating

system processing periods.

A particular client process seemsto slow all other processes.

Potential performance problems

Some of the underlying problems that can be caused by networks are:

Adaptive Server uses network services poorly.

13

Potential performance problems

e Thephysical limits of the network have been reached.

e Processes are retrieving unnecessary data values, increasing network
traffic unnecessarily.

« Processes are opening and closing connections too often, increasing
network load.

* Processes are frequently submitting the same SQL transaction,
causing excessive and redundant network traffic.

e Adaptive Server does not have enough network memory.

e Adaptive Server's network packet sizes are not big enough to handle
the type of processing needed by certain clients.

Basic questions on network performance

When looking at problems that you think might be network-related, ask
yourself these questions:

e Which processes usually retrieve a large amount of data?
e Arealarge number of network errors occurring?
e What isthe overall performance of the network?

e What isthe mix of transactions being performed using SQL and
stored procedures?

e Arealarge number of processes using the two-phase commit
protocol ?

« Arereplication services being performed on the network?

e How much of the network is being used by the operating system?

Techniques summary

Once you have gathered the data, you can take advantage of several
techniques that should improve network performance. These techniques
include:

e Using small packets for most database activity
e Using larger packet sizes for tasks that perform large data transfers

14

CHAPTER 2 Networks and Performance

e Using stored procedures to reduce overall traffic
¢ Filtering datato avoid large transfers
e |solating heavy network users from ordinary users

¢ Using client control mechanisms for special cases

Using sp_sysmon while changing network configuration

Use sp_sysmon while making network configuration changes to observe
the effects on performance. Use Adaptive Server Monitor to pinpoint
network contention on a particular database object.

For more information about using sp_sysmon, see the Performance and
Tuning Guide: Tools for Monitoring and Analyzing Performance book.

How Adaptive Server uses the network

All client/server communication occurs over a network via packets.
Packets contain a header and routing information, as well asthe datathey
carry.

Adaptive Server was one of the first database systemsto be built on a
network-based client/server architecture. Clients initiate a connection to
the server. The connection sends client requests and server responses.
Applications can have as many connections open concurrently as they
need to perform the required task.

The protocol used between the client and server is known as the Tabular
Data Stream™ (TDS), which forms the basis of communication for many
Sybase products.

15

Changing network packet sizes

Changing network packet sizes

By default, all connectionsto Adaptive Server use adefault packet size of
512 bytes. Thisworkswell for clients sending short queries and receiving
small result sets. However, some applications may benefit from an
increased packet size.

Typically, OLTP sends and receives large numbers of packetsthat contain
very littledata. A typical insert statement or update statement may be only
100 or 200 bytes. A dataretrieval, even one that joins several tables, may
bring back only one or two rows of data, and still not completely fill a
packet. Applications using stored procedures and cursors also typically
send and receive small packets.

Decision support applications often includelarge batches of Transact-SQL
and return larger result sets.

In both OLTP and DSS environments, there may be special needs such as
batch data loads or text processing that can benefit from larger packets.

The System Administration Guide describes how to change these
configuration parameters:

e Thedefault network packet size, if most of your applications are
performing large reads and writes

* The max network packet size and additional network memory, which
provides additional memory space for large packet connections

Only a System Administrator can change these configuration parameters.

Large versus Default packet sizes for user connections

16

Adaptive Server reserves enough spacefor all configured user connections
tologin at the default packet size. Large network packets cannot use that
space. Connections that use the default network packet size always have

three buffers reserved for the connection.

Connections that request large packet sizes acquire the space for their
network 1/0O buffers from the additional network memory region. If thereis
not enough spacein thisregion to allocate three buffers at the large packet
size, connections use the default packet size instead.

CHAPTER 2 Networks and Performance

Number of packets is important

Generally, the number of packets being transferred is more important than
the size of the packets. “Network” performance also includes the time
needed by the CPU and operating system to process a network packet.
This per-packet overhead affects performance the most. Larger packets
reduce the overall overhead costs and achieve higher physical throughput,
provided that you have enough data to be sent.

The following big transfer sources may benefit from large packet sizes:
e Bulk copy

e readtext and writetext commands

e select statements with large result sets

Thereis aways apoint at which increasing the packet size will not
improve performance, and may in fact decrease performance, because the
packets are not always full. Although there are analytical methods for
predicting that point, it is more common to vary the size experimentally
and plot theresults. If you conduct such experiments over aperiod of time
and conditions, you can determine a packet size that works well for alot
of processes. However, since the packet size can be customized for every
connection, specific experiments for specific processes can be beneficial.

The results can be significantly different between applications. Bulk copy
might work best at one packet size, whilelargeimage dataretrievals might
perform better at a different packet size.

If testing shows that some specific applications can achieve better
performance with larger packet sizes, but that most applications send and
receive small packets, clients need to request the larger packet size.

Evaluation tools with Adaptive Server

The sp_monitor system procedure reports on packet activity. This report
shows only the packet-related output:

packets recei ved packets sent packet err

10866(10580) 19991(19748) 0(0)

You can a'so use these global variables:

17

Changing network packet sizes

e @@pack_sent — Number of packets sent by Adaptive Server
e @@pack_received — Number of packets received
e @@packet_errors—Number of errors

These SQL statements show how the counters can be used:

sel ect "before" = @@®ack_sent
select * fromtitles
select "after" = @®ack_sent

Both sp_monitor and the global variables report all packet activity for al
users since the last restart of Adaptive Server.

See the Performance and Tuning Guide: Tools for Performance Satistics
book for more information about sp_monitor and these global variables.

Evaluation tools outside of Adaptive Server

Operating system commands al so provide information about packet
transfers. See the documentation for your operating system for more
information about these commands.

Server-based techniques for reducing network traffic

18

Using stored procedures, views, and triggers can reduce network traffic.
These Transact-SQL tools can store large chunks of code on the server so
that only short commands need to be sent across the network. If your
applications send large batches of Transact-SQL commands to Adaptive
Server, converting them to use stored procedures can reduce network
traffic.

e Stored procedures

Applications that send large batches of Transact-SQL can place less
load on the network if the SQL is converted to stored procedures.
Views can also help reduce the amount of network traffic.

You may be able to reduce network overhead by turning off
“doneinproc” packets.

For moreinformation, see* Reducing packet overhead” on page 1003
e Askfor only the information you need

CHAPTER 2 Networks and Performance

Applications should request only the rows and columns they need,
filtering as much data as possible at the server to reduce the number
of packetsthat need to be sent. In many cases, this can al so reduce the
disk 1/O load.

e Largetransfers

Large transfers simultaneously decrease overall throughput and
increase the average response time. If possible, large transfers should
be done during off-hours. If large transfers are common, consider
acquiring network hardware that is suitable for such transfers. Table
2-1 shows the characteristics of some network types.

Table 2-1: Network options

Type Characteristics

Token ring Token ring hardware responds better than Ethernet hardware
during periods of heavy use.

Fiber optic Fiber-optic hardware provides very high bandwidth, but is
usually too expensive to use throughout an entire network.

Separate A separate network can be used to handle network traffic
network between the highest volume workstations and Adaptive Server.

¢ Network overload

Overloaded networks are becoming increasingly common as more
and more computers, printers, and peripherals are network equipped.
Network managersrarely detect problems before database users start
complaining to their System Administrator

Be prepared to provide local network managers with your predicted
or actual network reguirements when they are considering the adding
resources. You should also keep an eye on the network and try to
anticipate problems that result from newly added equipment or
application requirements.

Impact of other server activities

You should be aware of the impact of other server activity and
maintenance on network activity, especially:

¢ Two-phase commit protocol

¢ Replication processing

19

Improving network performance

e Backup processing

These activities, especially replication processing and the two-phase
commit protocol, involve network communication. Systems that make
extensive use of these activities may see network-related problems.
Accordingly, these activities should be done only as necessary. Try to
restrict backup activity to times when other network activity islow.

Single user versus multiple users

You must take the presence of other usersinto consideration before trying
to solve a database problem, especially if those users are using the same
network.

Since most networks can transfer only one packet at atime, many users
may be delayed while alarge transfer isin progress. Such a delay may
cause locks to be held longer, which causes even more delays.

When response time is “abnormally” high, and normal tests indicate no
problem, it could be dueto other users on the same network. In such cases,
ask the user when the process was being run, if the operating system was
generally sluggish, if other users were doing large transfers, and so on.

In general, consider multiuser impacts, such as the delay caused by along
transaction, before digging more deeply into the database system to solve
an abnormal response time problem.

Improving network performance

Isolate heavy network users

Isolate heavy network users from ordinary network users by placing them
on a separate network, as shown in Figure 2-1.

20

CHAPTER 2 Networks and Performance

Figure 2-1: Isolating heavy network users

Before

Single

network . .
@ @ Client accessin
card < ServerA g
y 4 |
Clients accessing
<& ServerB

/—A B Two

network) _
@ @ cards Clleér;trsg::eAssmg
» i
Clients accessing
<& ServerB

Inthe “Before” diagram, clients accessing two different Adaptive Servers
use one network card. Clients accessing Servers A and B have to compete
over the network and past the network card.

Inthe “ After” diagram, clients accessing Server A use one network card
and clients accessing Server B use another.

Set tcp no delay on TCP networks

By default, the configuration parameter tcp no delay is set to “off,”
meaning that the network performs packet batching. It briefly delays
sending partial packets over the network.

While this improves network performance in terminal-emulation
environments, it can slow performance for Adaptive Server applications
that send and receive small batches. To disable packet batching, a System
Administrator can set the tcp no delay configuration parameter to 1.

21

Improving network performance

Configure multiple network listeners

22

Use two (or more) ports listening for asingle Adaptive Server. Front-end
software may be directed to any configured network ports by setting the
DSQUERY environment variable.

Using multiple network ports spreads out the network |oad and eliminates
or reduces network bottlenecks, thus increasing Adaptive Server
throughput.

See the Adaptive Server configuration guide for your platform for
information on configuring multiple network listeners.

CHAPTER 3 Using Engines and CPUs

Adaptive Server's multithreaded architecture is designed for high
performance in both uniprocessor and multiprocessor systems. This
chapter describes how Adaptive Server uses engines and CPUs to fulfill
client requests and manage internal operations. It introduces Adaptive
Server's use of CPU resources, describes the Adaptive Server Symmetric
MultiProcessing (SMP) model, and illustrates task scheduling with a
processing scenario.

This chapter also gives guidelines for multiprocessor application design
and describes how to measure and tune CPU- and engine-rel ated features.

Topic Page
Background concepts 23
Single-CPU process model 26
Adaptive Server SMP process model 31
Housekeeper task improves CPU utilization 35
Measuring CPU usage 37
Enabling engine-to-CPU affinity 40
Multiprocessor application design guidelines 42

Background concepts

This section provides an overview of how Adaptive Server processes
client requests. It also reviews threading and other related fundamentals.

Like an operating - system, arelational database must be able to respond
to the requests of many concurrent users. Adaptive Server isbased on a
multithreaded, single-process architecture that allowsit to manage
thousands of client connections and multiple concurrent client requests
without overburdening the operating - system.

23

Background concepts

In a system with multiple CPUs, you can enhance performance by
configuring Adaptive Server to run using multiple Adaptive Server
engines. Each engineisasingle operating - system processthat yieldshigh
performance when you configure one engine per CPU.

All engines are peers that communicate through shared memory as they
act upon common user databases and internal structures such as data
caches and lock chains. Adaptive Server engines service client requests.
They perform al database functions, including searching data caches,
issuing disk 1/0 read and write requests, requesting and releasing locks,
updating, and logging.

Adaptive Server manages the way in which CPU resources are shared
between the engines that process client requests. It also manages system
services (such as database locking, disk 1/0, and network 1/0) that impact
processing resources.

How Adaptive Server processes client requests

24

Adaptive Server creates anew client task for every new connection. It
fulfills aclient request as outlined in the following steps:

1 Theclient program establishes a network socket connection to
Adaptive Server.

2 Adaptive Server assigns atask from the pool of tasks, which are
allocated at start-up time. The task isidentified by the Adaptive
Server processidentifier, or spid, whichistracked in the sysprocesses
system table.

3 Adaptive Server transfers the context of the client request, including
information such as permissions and the current database, to the task.

4 Adaptive Server parses, optimizes, and compiles the request.

If parallel query execution is enabled, Adaptive Server alocates
subtasks to help perform the parallel query execution. The subtasks
are called worker processes, which are discussed in “ Adaptive
Server’'sworker process model” on page 513.

6 Adaptive Server executes the task. If the query was executed in
parallel, the task merges the results of the subtasks.

7 Thetask returnsthe results to the client, using TDS packets.

CHAPTER 3 Using Engines and CPUs

For each new user connection, Adaptive Server allocates a private data
storage area, a dedicated stack, and other internal data structures.

It usesthe stack to keep track of each client task’s state during processing,
and it uses synchronization mechanisms such as queueing, locking,
semaphores, and spinlocksto ensure that only onetask at atime has access
to any common, modifiable data structures. These mechanisms are
necessary because Adaptive Server processes multiple queries
concurrently. Without these mechanisms, if two or more queries were to
access the same data, dataintegrity would be sacrificed.

The data structures regquire minimal memory resources and minimal
system resources for context-switching overhead. Some of these data
structuresare connection-oriented and contain stati ¢ information about the
client.

Other data structures are command-oriented. For example, when a client
sends acommand to Adaptive Server, the executable query planis stored
in aninternal data structure.

Client task implementation

Adaptive Server client tasks are implemented as subprocesses, or
“lightweight processes,” instead of operating - system processes, as
subprocesses use only asmall fraction of the resourcesthat processes use.

Muultiple processes executing concurrently require more memory and CPU
time than multiple subprocesses. Processes also require operating —
system resources to switch context (time-share) from one process to the
next.

The use of subprocesses eliminates most of the overhead of paging,
context switching, locking, and other operating - system functions
associated with a one process-per-connection architecture. Subprocesses
require no operating — system resources after they are launched, and they
can share many system resources and structures.

Figure 3-1 illustrates the difference in system resources required by client
connections implemented as processes and client connections
implemented as subprocesses. Subprocesses exist and operate within a
single instance of the executing program process and its address spacein
shared memory.

25

Single-CPU process model

Figure 3-1: Process versus subprocess architecture

Process-based Client applications Subprocess-based
client implementation client implementation

@rver pI’OCGSA

Server process

Server process

Shared
memory

Server process

To give Adaptive Server the maximum amount of processing power, run
only essential non-Adaptive Server processes on the database machine.

Single-CPU process model

In asingle-CPU system, Adaptive Server runs asasingle process, sharing
CPU time with other processes, as scheduled by the operating - system.
This section is an overview of how an Adaptive Server system with a
single CPU uses the CPU to process client requests.

“Adaptive Server SMP process model” on page 31 expands on this
discussion to show how an Adaptive Server system with multiple CPUs
processes client requests.

Scheduling engines to the CPU

Figure 3-2 shows a run queue for a single-CPU environment in which

process 8 (proc 8) is running on the CPU and processes 6, 1, 7, and 4 are
in the operating - system run queue waiting for CPU time. Process 7 isan
Adaptive Server process; the others can be any operating - system process.

26

CHAPTER 3 Using Engines and CPUs

Legend: executing +

context switching —» v

sleeping E

Figure 3-2: Processes queued in the run queue for a single CPU

CPU Operating - system

Run queue

Inamultitasking environment, multiple processes or subprocesses execute
concurrently, alternately sharing CPU resources.

Figure 3-3 shows three subprocesses in a multitasking environment. The
subprocesses are represented by thethick, dark arrows pointing down. The
subprocesses shareasingle CPU by switching onto and off the engine over
time. They are using CPU time when they are solid — near the arrowhead.
They areinthe run queue waiting to execute or sleeping while waiting for
resources when they are represented by broken lines.

Notethat, at any onetime, only one processis executing. The others sleep
in various stages of progress.

Figure 3-3: Multithreaded processing

@ Subprocess 1 Subprocess 2 Subprocess 3

Time

!

E

L

i

27

Single-CPU process model

Scheduling tasks to the engine

28

Figure 3-4 shows tasks (or worker processes) queued up for an Adaptive
Server enginein asingle-CPU environment. This figure switches from
Adaptive Server in the operating - system context (as shown in Figure 3-
2 on page 27) to Adaptive Server internal task processing. Adaptive
Server, not the operating - system, dynamically schedulesclient tasksfrom
the run queue onto the engine. When the engine finishes processing one
task, it executes the task at the head of the run queue.

After atask beginsrunning on the engine, the engine continues processing
it until one of the following events occurs:

e Thetask needs aresource such as a page that is locked by another
task, or it needsto perform aslow job such asdisk 1/0 or network 1/O.
Thetask is put to sleep, waiting for the resource.

e Thetask runsfor aconfigurable period of time and reaches ayield
point. Then the task relinquishes the engine, and the next processin
the queue starts to run. “ Scheduling client task processing time” on
page 30 discussesin more detail how this works.

When you execute sp_who on a single-CPU system with multiple active
tasks, the sp_who output shows only a single task as “running”—it is the
sp_who task itself. All other tasks in the run queue have the status
“runnable.” The sp_who output also shows the cause for any sleeping
tasks.

Figure 3-4 also shows the sleep queue with two sleeping tasks, aswell as
other objectsin shared memory. Tasks are put to sleep while they are
waiting for resources or for the results of a disk 1/0O operation.

CHAPTER 3 Using Engines and CPUs

Figure 3-4: Tasks queue up for the Adaptive Server engine

'Adaptive Server Engine

Operating- system

— e
=& et
e —

e]
—aaate —
g -
—reae Procedure
= cache
—g5a5

a0

= Rt
—

Data cache ri

Index cache

7
il | >

Sleep queue Adaptive Server
Shared memory
Disk I/O
Lock sleep
Pending I/Os
Mi=g=m=4 Ef’_ﬁl
S o o
K& &= =

Adaptive Server structures

| I—

I g N

Execution task scheduling

The scheduler manages processing time for client tasks and internal

housekeeping.

29

Single-CPU process model

Scheduling client task processing time

30

The time slice configuration parameter prevents executing tasks from
monopolizing engines during execution. The scheduler allows atask to
execute on an Adaptive Server engine for amaximum amount of time that
isequal to thetime slice and cpu grace time values combined, using default
times for time slice (100 milliseconds, 1/10 of a second, or equivalent to
one clock tick) and cpu grace time (500 clock ticks, or 50 seconds).

Adaptive Server's scheduler does not force tasks off an Adaptive Server
engine. Tasks voluntarily relinquish the engine at ayield point, when the
task does not hold a vital resource such as a spinlock.

Each time the task comesto ayield point, it checksto seeif time slice has
been exceeded. If it has not, the task continues to execute. If execution
time does exceed time slice, the task voluntarily relinquishes the engine
within thecpu grace time interval and the next task in the run queue begins
executing.

The default value for the time slice parameter is 100 clock milliseconds,
and thereisseldom any reasonto changeit. Thedefault valuefor cpu grace
time 1500 clock ticks. If time slice is set too |ow, an engine may spend too
much time switching between tasks, which tends to increase response
time.

If time slice is set too high, CPU-intensive processes may monopolize the
CPU, which can increase response time for short tasks. If your
applications encounter time dice errors, adjust cpu grace time, not time
slice.

See Chapter 4, “Distributing Engine Resources,” for more information.
Use sp_sysmon to determine how many times tasks yield voluntarily.

If youwant to increase the amount of timethat CPU-intensive applications
run on an engine before yielding, you can assign execution attributes to
specific logins, applications, or stored procedures.

If thetask hasto relinquish the engine before fulfilling the client request,
it goesto the end of the run queue, unless there are no other tasksin the
run queue. If no tasks arein the run queue when an executing task reaches
ayield point during grace time, Adaptive Server grants the task another
processing interval.

If no other tasks are in the run queue, and the engine still has CPU time,
Adaptive Server continues to grant time slice intervals to the task until it
compl etes.

CHAPTER 3 Using Engines and CPUs

Normally, tasksrelinguish the engine at yield points prior to completion of
the cpu grace time interval. It is possible for atask not to encounter ayield
point and to exceed thetime slice interval. When the cpu grace time ends,
Adaptive Server terminates the task with atime dice error. If you receive
atime slice error, try doubling the value of cpu grace time. If the problem
persists, call Sybase Technical Support.

Maintaining CPU availability during idle time

When Adaptive Server has no tasksto run, it loops (holds the CPU),
looking for executable tasks. The configuration parameter runnable
process search count controls the number of times that Adaptive Server
loops.

With the default value of 2000, Adaptive Server loops 2000 times, looking
for incoming client requests, completed disk 1/0s, and new tasksintherun
gueue. If thereis no activity for the duration of runnable process search
count, Adaptive Server relinquishes the CPU to the operating - system.

The default for runnable process search count generally provides good
responsetime, if the operating - system is not running clients other than
Adaptive Server.

Use sp_sysmon to determine how runnable process search count affects
Adaptive Server's use of CPU cycles, engine yields to the operating -
system, and blocking network checks.

See Performance and Tuning Guide: Tools for Monitoring and Analyzing
Performance on using the sp_sysmon.

Adaptive Server SMP process model

Adaptive Server's Symmetric MultiProcessing (SMP) implementation
extends the performance benefits of Adaptive Server's multithreaded
architecture to multiprocessor systems. In the SMP environment, multiple
CPUs cooperate to perform work faster than a single processor can.

SMP isintended for machines with the following features:
¢ A symmetric multiprocessing operating - system

¢ Shared memory over acommon bus

31

Adaptive Server SMP process model

¢ Twoto 128 processors

« Very high throughput

Scheduling engines to CPUs

CPU

In asystem with multiple CPUs, multiple processes can run concurrently.
Figure 3-5 represents Adaptive Server engines as the nonshaded ovals
waiting in the operating - system run queue for processing time on one of
three CPUs. It shows two Adaptive Server engines, proc 3 and proc 8,
being processed simultaneoudly.

Figure 3-5: Processes queued in the OS run queue for multiple
CPUs

Operating - system
CPU

Run queue

The symmetric aspect of SMPisalack of affinity between processes and
CPUs—processes are hot attached to a specific CPU. Without CPU
affinity, the operating - system schedules enginesto CPUsin the sameway
as it schedules non-Adaptive Server processes to CPUs. If an Adaptive
Server engine does not find any runnabletasks, it can either relinquish the
CPU to the operating - system or continue to look for atask to run by
looping for the number of times set in the runnable process search count
configuration parameter.

Scheduling Adaptive Server tasks to engines

32

Scheduling Adaptive Server tasks to engines in the SMP environment is
similar to scheduling tasksin the single-CPU environment, asdescribed in
“Scheduling tasks to the engine” on page 28. The differenceisthat in the
SMP environment:

CHAPTER 3 Using Engines and CPUs

¢ Each engine has arun queue. Tasks have soft affinities to engines.
When atask runs on an engine, it creates an affinity to the engine. If
atask yieldsthe engine and thenisqueued again, it tendsto be queued
on the same engine’s run queue.

¢ Any engine can process the tasks in the global run queue (unless
logical process management has been used to assign the task to a
particular engine or set of engines).

Multiple network engines

Each Adaptive Server engine handlesthe network 1/O for its connections.
Engines are numbered sequentially, starting with engine 0.

When auser logsin to Adaptive Server, thetask isassigned in round-robin
fashion to one of the engines that will serve asits network engine. This
engine handles the login to establish packet size, language, character set,
and other login settings. All network 1/O for atask is managed by its
network engine until the task logs out.

Task priorities and run queues

At certain times, Adaptive Server increases the priority of some tasks,
especialy if they are holding an important resource or have had to wait for
aresource. In addition, logical process management allows you to assign
prioritiesto logins, procedures, or applications using sp_bindexeclass and
related system procedures.

See Chapter 4, “ Distributing Engine Resources,” for moreinformation on
performance tuning and task priorities.

Each task has apriority assigned to it; the priority can change over thelife
of the task. When an engine looks for atask to run, it first scans its own
high-priority queue and then the high-priority global run queue.

If there are no high-priority tasks, it looks for tasks at medium priority,
then at low priority. If it finds no tasks to run onits own run queues or the
global run queues, it can examine the run queues for another engine, and
steal atask from another engine. This combination of priorities, local and
global queues, and the ahility to move tasks between engines when
workload is uneven provides load balancing.

33

Adaptive Server SMP process model

Tasksintheglobal or engine run queuesare al in arunnable state. Output
from sp_who lists tasks as “runnable” when the task isin any run queue.

Processing scenario

34

The following steps describe how atask is scheduled in the SMP
environment. The execution cycle for single-processor systemsis very
similar. A single-processor system handlestask switching, putting tasksto
deep while they wait for disk or network 1/0, and checking queues in the
same way.

1 Assigning anetwork engine during login

When a connection logsin to Adaptive Server, it is assigned to an
enginethat will manage its network 1/0. Thisengine then handlesthe
login.

The engine assigns a task structure and establishes packet size,
language, character set, and other login settings. A task sleeps while
waiting for the client to send a request.

2 Checking for client requests

Another engine checks for incoming client requests once every
clock tick.

When thisengine findsacommand (or query) from the connection for
atask, it wakes up the task and placesit on the end of itsrun queue.

3 Fulfilling aclient request

When atask becomesfirst in the queue, the engine parses, compiles,
and begins executing the steps defined in the task’s query plan

4 Performing disk 1/0

If the task needs to access a page locked by another user, it is put to
sleep until the page is available. After such await, the task’s priority
isincreased, and it isplaced in the global run queue so that any engine
can run it

5 Performing network 1/0

When the task needs to return results to the user, the engine on which
it is executing issues the network /O request, and puts the tasks to
deep on anetwork write.

CHAPTER 3 Using Engines and CPUs

The engine checks once each clock tick to determine whether the
network /O has completed. When the I/O has completed, the task is
placed on the run queue for the engine to which it is affiliated, or the
global run queue.

Housekeeper task improves CPU utilization

When Adaptive Server has no user tasks to process, a housekeeper task
automatically begins writing dirty buffersto disk and performing other
maintenance tasks. Because these writes are done during the server’sidle
cycles, they are known as free writes. They result in improved CPU
utilization and a decreased need for buffer washing during transaction
processing. They also reduce the number and duration of checkpoint
spikes (times when the checkpoint process causes a short, sharp rise in
disk writes).

The housekeeper is the garbage collector. It cleans up data that was
logically deleted and resets the rows so the tables have space again.

Side effects of the housekeeper task

If the housekeeper task can flush all active buffer poolsin all configured
caches, it wakes up the checkpoint task.

The checkpoint task determineswhether it can checkpoint the database. If
it can, it writes acheckpoint log record indicating that all dirty pages have
been written to disk. The additional checkpoints that occur as aresult of
the housekeeper process may improve recovery speed for the database.

In applications that repeatedly update the same database page, the
housekeeper task may initiate some database writesthat are not necessary.
Although these writes occur only during the server’sidle cycles, they may
be unacceptable on systems with overloaded disks.

35

Housekeeper task improves CPU utilization

Configuring the housekeeper task

System Administrators can use the housekeeper free write percent
configuration parameter to control the side effects of the housekeeper task.
This parameter specifies the maximum percentage by which the
housekeeper task can increase database writes. Valid values range from 0
to 100.

By default, the housekeeper free write percent parameter is set to 1. This
allows the housekeeper task to continue to wash buffers aslong as the
database writes do not increase by more than 1 percent. The work done by
the housekeeper task at the default parameter setting resultsin improved
performance and recovery speed on most systems. However, setting
housekeeper free write percent too high can degrade performance. If you
want to increase the value, increase by only 1 or 2 percent each time.

A dbcc tune option, deviochar, controls the size of batches that the
housekeeper can write to disk at one time.

See “Increasing the housekeeper batch limit” on page 993.

Changing the percentage by which writes can be increased

Use sp_configure to change the percentage by which database writes can
be increased as a result of the housekeeper process:

sp_configure "housekeeper free wite percent", val ue

For example, issue the following command to stop the housekeeper task
from working when the frequency of database writes reaches 2 percent
above normal:

sp_configure "housekeeper free wite percent”, 2

Disabling the housekeeper task

You may want to disable the housekeeper task to establish a controlled
environment in which only specified user tasks are running. To disable the
housekeeper task, set the value of the housekeeper free write percent
parameter to O:

36

CHAPTER 3 Using Engines and CPUs

sp_configure "housekeeper free wite percent", 0

Warning! In addition to buffer washing, the housekeeper periodically
flushes statistics to system tables. These statistics are used for query
optimization, and incorrect statistics can severely reduce query
performance. Do not set the housekeeper free write percent to 0 on asystem
where data modification commands may be affecting the number of rows
and pages in tables and indexes.

Allowing the housekeeper task to work continuously

To allow the housekeeper task to work whenever there areidle CPU
cycles, regardliess of the percentage of additional database writes, set the
value of the housekeeper free write percent parameter to 100:

sp_configure "housekeeper free wite percent”, 100

The" Recovery management” on page 990 section of sp_sysmon shows
checkpoint information to help you determine the effectiveness of the
housekeeper.

Measuring CPU usage

This section describes how to measure CPU usage on machines with a
single processor and on those with multiple processors.

Single-CPU machines

Thereis no correspondence between your operating - system’s reports on
CPU usage and Adaptive Server'sinterna “CPU busy” information. It is
normal for an Adaptive Server to exhibit very high CPU usage while
performing an 1/0O-bound task.

37

Measuring CPU usage

A multithreaded database engineis not allowed to block on I/O. While the
asynchronous disk I/O isbeing performed, Adaptive Server services other
user tasksthat are waiting to be processed. If there are no tasksto perform,
it entersabusy-wait loop, waiting for compl etion of the asynchronous disk
1/O. This low-priority busy-wait loop can result in very high CPU usage,
but because of its low priority, it is harmless.

Using sp_monitor to measure CPU usage

Use sp_monitor to see the percentage of time Adaptive Server uses the
CPU during an elapsed time interval:

| ast _run current _run seconds
w28 1000 si25PM Jul 28 1999 5:31PM 360
cpu_busy i 0_busy idle
5531(359)-99% 0(0)-0% 178302(0)-0%
packets_recei ved packets_sent packet _errors
57650(3509) 60803(7252) o)
total read total _wite total _errors connections
190284(14005) 160023(6396) 0(0) 178()

For moreinformation about sp_monitor, seethe Adaptive Server Reference
Manual.

Using sp_sysmon to measure CPU usage

sp_sysmon gives more detailed information than sp_monitor. The“Kernel
Utilization” section of the sp_sysmon report displays how busy the engine
was during the sample run. The percentage in this output is based on the

time that CPU was allocated to Adaptive Server; it is not a percentage of

the total sampleinterval.

The"“CPU Yieldsby engine” section displaysinformation about how often
the engine yielded to the operating - system during the interval.

See Chapter 38, “Monitoring Performance with sp_sysmon,” for more
information about sp_sysmon.

38

CHAPTER 3 Using Engines and CPUs

Operating - system commands and CPU usage

Operating - system commands for displaying CPU usage are documented
in the Adaptive Server installation and configuration guides.

If your operating - system tools show that CPU usage is more than 85
percent most of the time, consider using a multi-CPU environment or off-
loading some work to another Adaptive Server.

Determining when to configure additional engines

When you are determining whether to add additional engines, the major
factors to consider are the:

» Load on existing engines

» Contention for resources such as locks on tables, disks, and cache
spinlocks

* Responsetime

If the load on existing enginesis more than 80 percent, adding an engine
should improve response time, unless contention for resourcesis high or
the additional engine causes contention.

Before configuring more engines, use sp_sysmon to establish a baseline.
Look at the sp_sysmon output for the following sections in Chapter 38,
“Monitoring Performance with sp_sysmon.”

In particular, study thelinesor sectionsin the output that may reveal points
of contention:

» “Logical lock contention” on page 923.

» “Addresslock contention” on page 924.

e “ULC semaphore requests’ on page 950.
» “Log semaphore requests’ on page 950.

* “Page splits’ on page 955.

* “Lock summary” on page 967.

» “Cache spinlock contention” on page 981.

* “1/Osdelayed by” on page 995.

39

Enabling engine-to-CPU affinity

After increasing the number of engines, run sp_sysmon again under
similar load conditions, and check the “Engine Busy Utilization” section
in the report along with the possible points of contention listed above.

Taking engines offline

dbcc (engine) can be used to take engines offline. The syntax is:

dbcc engine(offline, [enginenum])
dbcc engine(“online”)

If enginenum is not specified, the highest-numbered engineis taken
offline. For more information, see the System Administration Guide.

Enabling engine-to-CPU affinity

40

By default, thereis no affinity between CPUs and engines in Adaptive
Server. You may see dlight performance gains in high-throughput
environments by establishing affinity of enginesto CPUs.

Not all operating - systems support CPU affinity. The dbcc tune command
issilently ignored on systems that do not support engine-to-CPU affinity.
The dbce tune command must be reissued each time Adaptive Server is
restarted. Each time CPU affinity isturned on or off, Adaptive Server
prints a message in the error log indicating the engine and CPU numbers
affected:

Engine 1, cpu affinity set to cpu 4.
Engine 1, cpu affinity renoved.

The syntax is:
dbcc tune(cpuaffinity, start_cpu [, on | off])

start_cpu specifies the CPU to which engine 0 isto be bound. Engine1is
bound to the CPU numbered (start_cpu + 1). Theformulafor determining
the binding for engine nis:

((start_cpu + n) % nunber_of _cpus

CPU numbers range from 0 through the number of CPUs minus 1.

CHAPTER 3 Using Engines and CPUs

On afour-CPU machine (with CPUs numbered 0-3) and a four-engine
Adaptive Server, this command:

dbcc tune(cpuaffinity, 2, "on")

The command gives this result:

Engine CPU
0

(the start_cpu number specified)

2
1 3
2 0
3 1

On the same machine, with a three-engine Adaptive Server, the same
command causes the following affinity:

Engine CPU
0 2
1 3
2 0

In this example, CPU 1 isnot used by Adaptive Server.

To disable CPU &ffinity, use-1in place of start_cpu, and specify off for the
setting:

dbcc tune(cpuaffinity, -1, "off")

You can enable CPU affinity without changing the value of start_cpu by
using -1 and on for the setting:

dbcc tune(cpuaffinity, -1, "on")

Thedefault valuefor start_cpuis1if CPU affinity hasnot been previously
Set.

To specify anew value of start_cpu without changing the on/off setting,
use:

dbcc tune (cpuaffinity, start_cpu)

If CPU affinity is currently enabled, and the new start_cpu is different
from its previous value, Adaptive Server changes the affinity for each
engine.

If CPU affinity isoff, Adaptive Server notesthe new start_cpu value, and
the new affinity takes effect the next time CPU affinity isturned on.

To see the current value and whether affinity is enabled, use:

41

Multiprocessor application design guidelines

dbcc tune(cpuaffinity, -1)

This command only prints current settings to the error log and does not
change the affinity or the settings.

Multiprocessor application design guidelines

42

If you are moving applications from asingle-CPU environment to an SMP
environment, this section offers some issues to consider.

Increased throughput on multiprocessor Adaptive Servers makes it more
likely that multiple processes may try to access a data page
simultaneoudly. It is especially important to adhere to the principles of
good database design to avoid contention. Following are some of the
application design considerations that are especially important in an SMP
environment.

e Multipleindexes

The increased throughput of SMP may result in increased lock
contention when all pages-locked tables with multiple indexes are
updated. Allow no more than two or three indexes on any table that
will be updated often.

For information about the effects of index maintenance on
performance, see “Index management” on page 952.
e Managing disks

The additional processing power of SMP may increase demands on
the disks. Therefore, it is best to spread data across multiple devices
for heavily used databases.

See “Disk 1/0 management” on page 994 for information about
sp_sysmon reports on disk utilization.

e Adjusting the fillfactor for create index commands

You may need to adjust the fillfactor in create index commands.
Because of the added throughput with multiple processors, setting a
lower fillfactor may temporarily reduce contention for the data and
index pages.

e Transaction length

CHAPTER 3 Using Engines and CPUs

Transactions that include many statements or take along timeto run
may result inincreased lock contention. Keep transactions as short as
possible, and avoid holding locks — especially exclusive or update
locks —while waiting for user interaction

Temporary tables

Temporary tables (tablesin tempdb) do not cause contention, because
they are associated with individual usersand are not shared. However,
if multiple user processes use tempdb for temporary objects, there can
be some contention on the system tables in tempdb.

See “Temporary tables and locking” on page 632 for information on
ways to reduce contention.

43

Multiprocessor application design guidelines

44

CHAPTER 4

Distributing Engine Resources

This chapter explains how to assign execution attributes, how Adaptive
Server interprets combinations of execution attributes, and how to help
you predict the impact of various execution attribute assignments on the
system.

Understanding how Adaptive Server uses CPU resourcesisaprerequisite
for understanding this chapter.

For more information, see Chapter 3, “Using Engines and CPUS.”

Topic Page
Algorithm for successfully distributing engine resources 45
Manage preferred access to resources 53
Types of execution classes 54
Setting execution class attributes 58
Rules for determining precedence and scope 64
Example scenario using precedence rules 69
Considerations for Engine Resource Distribution 73

Algorithm for successfully distributing engine

resources

This section gives an approach for successful tuning on the task level.

The interactions among execution objects in an Adaptive Server
environment are complex. Furthermore, every environment is different:
Each involvesits own mix of client applications, logins, and stored
procedures and is characterized by the interdependencies between these
entities.

Implementing execution precedence without having studied the
environment and the possible implications can lead to unexpected (and
negative) results.

45

Algorithm for successfully distributing engine resources

46

For example, say you have identified a critical execution object and you
want to raise its execution attributes to improve performance either
permanently or on a per-session basis (“on the fly”). If this execution
object accesses the same set of tables as one or more other execution
objects, raising its execution priority can lead to performance degradation
due to lock contention among tasks at different priority levels.

Because of the unique nature of every Adaptive Server environment, it is
impossible to provide a detailed procedure for assigning execution
precedence that makes sense for all systems. However, this section
provides guidelines with a progression of steps to use and to discuss the
issues commonly related to each step.

The stepsinvolved with assigning execution attributes areillustrated in
Figure 4-1. A discussion of the steps follows the figure.

CHAPTER 4 Distributing Engine Resources

Figure 4-1: Process for assigning execution precedence

Analyze the environment, perform
benchmark tests, and set goals.

Understand concepts well enough
to predict possible consequences.

Assign performance attributes to
establish an execution hierarchy.

onitor and

analyze results.
Goals
accomplished

Does it
makes sense to
continue using resources

for tuning
?

performance
satisfactory
?

47

Algorithm for successfully distributing engine resources

Algorithm guidelines

48

1

Study the Adaptive Server environment.

See “Environment analysis and planning” on page 49 for details.

Analyze the behavior of all execution objects and categorize
them aswell as possible.

Understand interdependencies and interactions between
execution objects.

Perform benchmark teststo use as abaseline for comparison after
establishing precedence.

Think about how to distribute processing in a multiprocessor
environment.

Identify the critical execution objectsfor which you will enhance
performance.

Identify the noncritical execution objects that can afford
decreased performance.

Establish a set of quantifiable performance goals for the
execution objects identified in the last two items.

Understand the effects of using execution classes.

See “Execution class attributes’ on page 55 for details.

Understand the basic concepts associated with execution class
assignments.

Decide whether you need to create one or more user defined-
execution classes.

Understand the implications of different class level
assignments—how do assignments affect the environment in
terms of performance gains, losses, and interdependencies?

Assign execution classes and any independent engine affinity
attributes.

After making execution precedence assignments. analyze the running
Adaptive Server environment.

See “Results analysis and tuning” on page 52 for details.

Run the benchmark tests you used in step 1 and compare the
results.

CHAPTER 4 Distributing Engine Resources

e If theresults are not what you expect, take a closer look at the
interactions between execution objects, as outlined in step 1.

¢ Investigate dependencies that you might have missed.

5 Finetunethe results by repeating steps 3 and 4 as many times as
necessary.

6 Monitor the environment over time.

Environment analysis and planning

Analyzing

Where to start

This section elaborates on step 1 of “ Algorithm for successfully
distributing engine resources’ on page 45.

Environment analysis and planning involves the following actions:
* Analyzing the environment
» Performing benchmark tests to use as a baseline

» Setting performance goals

The degree to which your execution attribute assignments enhance an
execution object’s performance is a function of the execution object’s
characteristics and its interactions with other objects in the Adaptive
Server environment. It is essential to study and understand the Adaptive
Server environment in detail so that you can make decisions about how to
achieve the performance goals you set.

Analysisinvolves these two phases:
» Phase 1 - anayze the behavior of each execution object.

» Phase2—usetheresults from the object analysis to make predictions
about interactions between execution objects within the Adaptive
Server system.

First, make alist containing every execution object that can runin the
environment. Then, classify each execution object and its characteristics.
Categorize the execution objects with respect to each other in terms of
importance. For each, decide which one of the following applies:

49

Algorithm for successfully distributing engine resources

e Itisahighly critical execution object needing enhanced response
time,

e |tisan execution object of medium importance, or

e Itisanoncritical execution object that can afford slower response
time.

Example: phase 1 — execution object behavior

Typical classifications include intrusive/unintrusive, 1/O-intensive, and
CPU-intensive. For example, identify each object asintrusive or
unintrusive, 1/0 intensive or not, and CPU intensive or not. You will
probably need to identify additional issues specific to the environment to
gain useful insight.

Intrusive and unintrusive

50

Two or more execution objects running on the same Adaptive Server are
intrusive when they use or access a common set of resources.

Intrusive applications

Effect of Assigning high execution attributes to intrusive applications might degrade performance.
assigning

attributes

Example Consider a situation in which anoncritical application is ready to release aresource, but

becomes blocked when a highly-critical application starts executing. If a second critical
application needs to use the blocked resource, then execution of this second critical
application is also blocked

If the applications in the Adaptive Server environment use different
resources, they are unintrusive.

Unintrusive applications

Effect of You can expect enhanced performance when you assign preferred execution attributes to
assigning an unintrusive application.

attributes

Example Simultaneous distinct operations on tables in different databases are unintrusive. Two

operations are also unintrusive if oneis compute bound and the other is 1/O bound.

CHAPTER 4 Distributing Engine Resources

I/O-intensive and CPU-intensive execution objects

When an execution object is1/O intensive, it might help to give it EC1
attributes and, at the same time, assign EC3 attributesto any compute-
bound execution objects. This can help because an object performing I/O
will not normally use an entire time quantum, and will give up the CPU
before waiting for 1/0 to compl ete.

By giving preferenceto I/O-bound Adaptive Server tasks, Adaptive Server
ensures that these tasks are runnable as soon asthe /O isfinished. By
letting the /O take place first, the CPU should be able to accommodate
both types of applications and logins.

Example: phase 2 —the environment as a whole

Follow up on phase 1, in which you identified the behavior of the
execution objects, by thinking about how applications will interact.

Typically, asingle application behaves differently at different times; that
is, it might be alternately intrusive and unintrusive, 1/0 bound, and CPU
intensive. This makes it difficult to predict how applications will interact,
but you can look for trends.

Organize the results of the analysis so that you understand as much as
possible about each execution object with respect to the others. For
example, you might create atable that identifies the objects and their
behavior trends.

Using Adaptive Server monitoring toolsis one of the best ways to
understand how execution objects affect the environment.

Performing benchmark tests

Perform benchmark tests before assigning any execution attributes so that
you have the results to use as a baseline after making adjustments.

Two tools that can help you understand system and application behavior
are:

» Adaptive Server Monitor provides a comprehensive set of
performance statistics. It offers graphical displaysthrough which you
can isolate performance problems.

51

Algorithm for successfully distributing engine resources

Setting goals

sp_sysmon is asystem procedure that monitors system performance
for aspecified time interval and then prints out an ASCII text-based
report.

For information on using sp_sysmon see Performance and Tuning
Guide: Tools for Monitoring and Analyzing Performance. In
particular, see “ Application management” on page 929.

Establish aset of quantifiable performance goals. These should be specific
numbers based on the benchmark results and your expectations for
improving performance. You can use these goals to direct you while
assigning execution attributes.

Results analysis and tuning

Here are some suggestions for analyzing the running Adaptive Server
environment after you configure the execution hierarchy:

52

1

Run the same benchmark tests you ran before assigning the execution
attributes, and compare the results to the baseline results. See
“Environment analysis and planning” on page 49.

Ensure that there is good distribution across all the available engines
using Adaptive Server Monitor or sp_sysmon. Check the “Kernel
Utilization” section of the sp_sysmon report.

Also see “ Application management” on page 929.

If the results are not what you expected, take a closer look at the
interactions between execution objects.

Asdescribed in “Environment analysis and planning” on page 49,
look for inappropriate assumptions and dependencies that you might
have missed.

M ake adjustments to the performance attributes.

Finetune the results by repeating these steps as many times as
necessary.

CHAPTER 4 Distributing Engine Resources

Monitoring the environment over time

Adaptive Server has several stored procedures for example sp_sysmon,
optdiag, sp_spaceused, that are used to monitor performance and will give
valid information on the status of the system.

See Performance and Tuning Guide: Tools for Monitoring and Analyzing
Performance for information on monitoring the system.

Manage preferred access to resources

Most performance-tuning techniques give you control either at the system
level or the specific query level. Adaptive Server also gives you control
over the relative performance of simultaneously running tasks.

Unlessyou have unlimited resources, the need for control at the task level
isgreater in parallel execution environments because there is more
competition for limited resources.

You can use system procedures to assign execution attributesthat indicate
which tasks should be given preferred access to resources. The Logical
Process Manager uses the execution attributeswhen it assigns prioritiesto
tasks and tasks to engines.

Execution attributes al so affect how long aprocess can use an engine each
time the process runs. In effect, assigning execution attributes lets you
suggest to Adaptive Server how to distribute engine resources between
client applications, logins, and stored procedures in a mixed workload
environment.

Each client application or login can initiate many Adaptive Server tasks.
In asingle-application environment, you can distribute resources at the
login and task |evels to enhance performance for chosen connections or
sessions. In a multiple-application environment, you can distribute
resourcesto improve performancefor selected applicationsand for chosen
connections or sessions.

Warning! Assign execution attributes with caution.

Arbitrary changesin the execution attributes of one client application,
login, or stored procedure can adversely affect the performance of others.

53

Types of execution classes

Types of execution classes

An execution class is a specific combination of execution attributes that
specify valuesfor task priority, time slice, and task-to-engine affinity. You
can bind an execution class to one or more execution objects, which are
client applications, logins, and stored procedures.

There are two types of execution classes — predefined and user-defined.
Adaptive Server provides three predefined execution classes. You can
create user-defined execution classes by combining execution attributes.

Predefined execution classes

Adaptive Server provides the following predefined execution classes:
e EC1-—hasthe most preferred attributes.

e EC2—hasaverage values of attributes.

e EC3—hasnon-preferred values of attributes.

Objects associated with EC2 are given average preference for engine
resources. If an execution object is associated with EC1, Adaptive Server
considersit to be critical and tries to give it preferred access to engine
resources.

Any execution object associated with EC3 is considered to be least critical
and does not receive engine resources until execution objects associated
with EC1 and EC2 are executed. By default, execution objects have EC2
attributes.

To change an execution object’s execution class from the EC2 default, use
sp_bindexeclass, described in “ Assigning execution classes’ on page 58.

User-Defined execution classes

54

In addition to the predefined execution classes, you can define your own
execution classes. Reasons for doing thisinclude:

e EC1, EC2, and EC3 do not accommodate all combinations of
attributes that might be useful.

e Associating execution objects with a particular group of engines
would improve performance.

CHAPTER 4 Distributing Engine Resources

Execution class

The system procedure sp_addexeclass creates a user-defined execution
class with a name and attributes that you choose. For example, the
following statement defines a new execution class called DS with alow—
priority value and allows it to run on any engine:

sp_addexecl ass DS, LON 0, ANYENG NE

You associate a user-defined execution class with an execution object
using sp_bindexeclass just asyou would with a predefined execution class.

attributes

Each predefined or user-defined execution class is composed of a
combination of three attributes: base priority, time slice, and an engine
affinity. These attributes determine performance characteristics during
execution.

The attributes for the predefined execution classes, EC1, EC2, and EC3,
are fixed, as shown in Table 4-1. You specify the mix of attribute values
for user-defined execution classes when you create them, using
sp_addexeclass.

Table 4-1: Fixed-attribute composition of predefined execution
classes

Execution class Base priority Time slice Engine affinity

level attribute* attribute ** attribute***

EC1 High Timedlice>t None

EC2 Medium Timeslice=t None

EC3 Low Timedlice<t Engine with the highest

engine ID number
See “Base priority” on page 56, “ Time slice” on page 56 and “ Task-to-
engine affinity” on page 57 for more information.

By default, atask on Adaptive Server operates with the same attributes as
EC2: its base priority ismedium, itstime sliceis set to onetick, and it can
run on any engine.

55

Execution class attributes

Base priority

Time slice

56

Base priority isthe priority you assign to atask when you create it. The
values are “high,” “medium,” and “low.” Thereisarun queue for each
priority for each engine, and the global run queuealso hasaqueuefor each
priority.

When an enginelooksfor atask to run, it first checksitsown high-priority
run queue, then the high-priority global run queue, then its own medium-
priority run queue, and so on. The effect isthat runnable tasks in the high-
priority run queues are scheduled onto engines more quickly, than tasksin
the other queues.

During execution, Adaptive Server can temporarily change atask’s
priority if it needsto. It can be greater than or equal to, but never lower
than, its base priority.

When you create a user-defined execution class, you can assign the values
high, medium or low to the task.

Adaptive Server handles several processes concurrently by switching
between them, allowing one process to run for afixed period of time (a
time slice) before it lets the next process run.

Asshown in Table 4-1 on page 55, the time dlice attribute is different for
each predefined execution class. EC1 hasthelongest timedlicevalue, EC3
has the shortest time dlice value, and EC2 has atime dlice valuethat is
between the values for EC1 and EC3.

More precisely, thetime period that each task isalowed to run isbased on
the value for the time slice configuration parameter, as described in
“Scheduling client task processing time” on page 30. Using default values
for configuration parameters, EC1 execution objects may run for double
thetime dicevalue; thetime dlice of an EC2 execution object isequivalent
to the configured value; and an EC3 execution object yields at the first
yield point it encounters, often not running for an entire time dlice.

If tasks do not yield the engine for other reasons (such as needing to
perform 1/O or being blocked by alock) the effect isthat EC1 clients run
longer and yield the engine fewer times over the life of a given task. EC3
execution objectsrun for very short periods of time when they have access
to the engine, so they yield much more often over the life of the task. EC2
tasksfall between EC1 and EC3in runtime and yields.

CHAPTER 4 Distributing Engine Resources

Currently, you cannot assign time slice values when you create user-
defined execution classes with sp_addexeclass. Adaptive Server assigns
the EC1, EC2, and EC3 time slice values for high, medium, and low
priority tasks, respectively.

Task-to-engine affinity

In a multiengine environment, any available engine can process the next
task in the global run queue. The engine affinity attribute letsyou assign a
task to an engine or to agroup of engines. There are two ways to use task-
to-engine affinity:

» Associate less critical execution objects with a defined group of
enginesto restrict the object to asubset of thetotal number of engines.
This reduces processor availability for those objects. The more
critical execution objects can execute on any Adaptive Server engine,
so performance for them improves because they have the benefit of
the resources that the less critical ones are deprived of.

» Associate more critical execution objects with a defined group of
enginesto which less critical objectsdo not have access. Thisensures
that the critical execution objects have access to a known amount of
processing power.

EC1 and EC2 do not set engine affinity for the execution object; however,
EC3 sets affinity to the Adaptive Server engine with the highest engine
number in the current configuration.

You can create engine groups with sp_addengine and bind execution
objects to an engine group with sp_addexeclass. If you do not want to
assign engine affinity for a user-defined execution class, using

ANY ENGINE asthe engine group parameter allowsthetask to run on any
engine.

Note The engine affinity attributeis not used for stored procedures.

57

Setting execution class attributes

Setting execution class attributes

You implement and manage execution hierarchy for client applications,
logins, and stored procedures using the five categories of system
procedures listed in the following table.

Table 4-2: System procedures for managing execution object

precedence

Category

Description

System procedures

User-defined execution
class

Create and drop a user-defined class with
custom attributes or change the attributes
of an existing class.

* sp_addexeclass

* sp_dropexeclass

Execution class binding

Bind and unbind predefined or user-
defined classesto client applications and
logins.

* sp_bindexeclass

* sp_unbindexeclass

For the session only

Set and clear attributes of an active session

e sp_setpsexe

(“fonthefly”) only. * sp_clearpsexe

Engines Add engines to and drop engines from * sp_addengine
engine groups, create and drop engine « sp_dropengine
groups. h

Reporting Report on engine group assignments, * sp_showcontrolinfo

application bindings, execution class
attributes.

* sp_showexeclass

* sp_showpsexe

See the Adaptive Server Reference Manual for complete descriptions of

the system proceduresin Table 4-2.

Assigning execution classes

The following example illustrates how to assign preferred access to
resources to an execution object by associating it with EC1. In this case,
the execution object is a combination of application and login.

58

The syntax for the sp_bindexeclass is:

sp_bindexeclass object_name, object_type,
scope, class_name

Suppose you decide that the“sa” login must get results fromisgl asfast as
possible. You can tell Adaptive Server to give execution preference to
login “sa” when it executesisql by issuing sp_bindexeclass with the
preferred execution class EC1. For example:

sp_bi ndexecl ass sa, LG

isql, EC1

CHAPTER 4 Distributing Engine Resources

This statement stipulates that whenever alogin (LG) called “sa’ executes
the isgl application, the “sa’ login task executes with EC1 attributes.
Adaptive Server improves response time for the “sa” login by:

e Placing it in ahigh-priority run queue, so it is assigned to an engine
more quickly

e Allowing it to run for alonger period of time than the default value
for time dice, so it accomplishes more work when it has accessto the
engine

Engine groups and establishing task-to-engine affinity

Thefollowing stepsillustrate how you can use system proceduresto create
an engine group associated with a user-defined execution class and bind
that execution classto user sessions. In thisexample, the server is used by
technical support staff, who must respond as quickly as possible to
customer needs, and by managers who are usually compiling reports, and
can afford slower response time.

The example uses sp_addengine and sp_addexeclass.

You create engine groups and add engines to existing groups with
sp_addengine. The syntax is:

sp_addengine engine_number, engine_group

You set the attributes for user-defined execution classes using
sp_addexeclass. The syntax is:

sp_addexeclass class_name, base_priority,
time_slice, engine_group

The steps are:

1 Create an engine group using sp_addengine. This statement creates a
group called DS_GROUP, consisting of engine 3:

sp_addengi ne 3, DS_GROUP

To expand the group so that it also includes engines 4 and 5, execute
sp_addengine two more times for those engine numbers:

sp_addengi ne 4, DS_GROUP
sp_addengi ne 5, DS_GROUP

2 Create a user-defined execution class and associate it with the
DS_GROUP engine group using sp_addexeclass.

59

Setting execution class attributes

60

This statement definesanew execution class called DS with apriority
value of “LOW” and associatesit with the engine group DS_GROUP:

sp_addexecl ass DS, LOW 0, DS_CROUP

Bind the less critical execution objects to the new execution class
using sp_bindexeclass.

For example, you can bind the manager logins, “mgr1”, “mgr2”, and
“mgr3”, to the DS execution class using sp_bindexeclass three times:

sp_bi ndexecl ass ngrl, LG NULL, DS
sp_bi ndexecl ass nmgr2, LG NULL, DS
sp_bi ndexecl ass nmgr3, LG NULL, DS

The second parameter, “ LG” , indicates that the first parameter isa
login name. Thethird parameter, NULL, indicatesthat the association
appliesto any application that the login might be running. The fourth
parameter, DS, indicates that the login is bound to the DS execution
class.

The result of this example is that the technical support group (not bound
to an engine group) is given access to more immediate processing
resources than the managers.

Figure 4-2 illustrates the associations in this scenario:

Logins“mgrl”, “mgr2”, and “mgr3” have affinity to the DS engine
group consisting of engines 3, 4, and 5.

Logins“tsl”, “ts2”, “ts3”, and “ts4” can use all six Adaptive Server
engines.

CHAPTER 4 Distributing Engine Resources

Figure 4-2: An example of engine affinity

DS class, with affinity to DS_GROUP engines

mgr3

Engine 5)

Tasks without execution attributes can run on any engine

How execution class bindings affect scheduling

You can uselogical process management to increase the priority of
specific logins, of specific applications, or of specific logins executing
specific applications. This example looks at:

» Anorder_entry application, an OLTP application critical to taking
customer orders.

» A sales_report application, that can prepare various reports. Some
managers run this application with default characteristics, but other
managers run the report at lower priority.

e Other users, who are running various other applications at default
priorities (no assignment of execution classes or priorities).

Execution class bindings

The following statement binds order_entry with EC1 attributes, giving
higher priority to the tasks running it:

sp_bi ndexecl ass order_entry, AP, NULL, EC1

Thefollowing sp_bindexeclass statement specifies EC3 when “mgr” runs
the sales_report application:

sp_bi ndexecl ass ngr, LG sales_report, EC3

61

Setting execution class attributes

Thistask can execute only whentaskswith EC1 and EC2 attributesareidle
or in asleep state.

Figure 4-3 shows four execution objects running tasks. Several users are
running theorder_entry and sales_report applications. Two other loginsare
active, “mgr” (logged in once using the sales_report application, and twice
using isql) and “cs3” (not using the affected applications).

Figure 4-3: Execution objects and their tasks

order_entry

D%

D 6
Priority:
H High
L Low
D Default

When the “mgr” login usesisql (tasks 1 and 2), the task runs with default
attributes. But when the “mgr” login uses sales_report, the task runs at
EC3. Other managers running sales_report (tasks 6 and 7) run with the
default attributes. All tasks running order_entry run at high priority, with
EC1 attributes (tasks 3, 4 and 8). “cs3” runs with default attributes.

Engine affinity can affect scheduling

62

Each execution classis associated with a different priority:

e Tasksassigned to EC1 are placed in a high-priority run queue.

e Tasksassigned to EC2 are placed in a medium-priority run queue.
e Tasksassigned to EC3 are placein alow-priority run queue.

An engine looking for atask to run first looksin its own high-priority run
queues, then in the high-priority global run queue. If there are no high-
priority tasks, it checks for medium-priority tasks in its own run queue,
then in the medium-priority global run queue, and finally for low-priority
tasks.

CHAPTER 4 Distributing Engine Resources

What happensif atask hasaffinity to aparticular engine? Assumethat task
7inFigure 4-3 on page 62, ahigh-priority task in the global run queue, has
a user-defined execution class with high priority and affinity to engine 2.

Engine 2 currently has high-priority tasks queued and is running another

task.

If engine 1 has no high-priority tasks queued when it finishes processing
task 8in Figure 4-3 on page 62, it checksthe global run queue, but cannot
process task 7 due to the engine binding. Engine 1 then checks its own
medium-priority queue, and runs task 15. Although a System
Administrator assigned the preferred execution class EC1, engine affinity
temporarily lowered task 7's execution precedence to below that of atask
with EC2.

This effect might be highly undesirable or it might be what the

performance tuner intended. You can assign engine affinity and execution
classes in such away that task priority is not what you intended. You can
also make assignmentsin such away that taskswith low priority might not
ever run, or might wait for extremely long times — another reason to plan
and test thoroughly when assigning execution classes and engine affinity.

Setting attributes for a session only

Getting information

If you need to change any attribute valuetemporarily for an active session,
you can do so using sp_setpsexe.

The changein attributesisvalid only for the specified spid and isin effect
only for the duration of the session, whether it ends naturally or is
terminated. Setting attributes using sp_setpsexe neither atersthe
definition of the execution class for any other process nor does it apply to
the next invocation of the active process on which you use it.

To clear attributes set for a session, use sp_clearpsexe.

Adaptive Server stores the information about execution class assignments
in the system tables sysattributes and sysprocesses and supports several
system procedures for determining what assignments have been made.

63

Rules for determining precedence and scope

You can use sp_showcontrolinfo to display information about the execution
objects bound to execution classes, the Adaptive Server enginesin an
engine group, and session-level attribute bindings. If you do not specify
parameters, sp_showcontrolinfo displays the complete set of bindings and
the composition of all engine groups.

sp_showexeclass displays the attribute values of an execution class or all
execution classes.

You can also use sp_showpsexe to see the attributes of all running
processes.

Rules for determining precedence and scope

Determining the ultimate execution hierarchy between two or more
execution objects can be complicated. What happens when acombination
of dependent execution objects with various execution attributes makes
the execution order unclear?

For example, an EC3 client application can invoke an EC1 stored
procedure. Do both execution objects take EC3 attributes, EC1 attributes,
or EC2 attributes?

Understanding how Adaptive Server determines execution precedenceis
important for getting what you want out of your execution class
assignments. Two fundamental rules, the precedence rule and the scope
rule, can help you determine execution order.

Multiple execution objects and ECs

64

Adaptive Server uses precedence and scope rules to determine which
specification, among multiple conflicting ones, to apply.

Usetherulesin this order:

1 Usetheprecedencerulewhenthe processinvolves multipleexecution
object types.

2 Usethe scope rule when there are multiple execution class definitions
for the same execution object.

CHAPTER 4 Distributing Engine Resources

Precedence rule

Precedence Rule Example

The precedence rule sorts out execution precedence when an execution
object belonging to one execution class invokes an execution object of
another execution class.

The precedence rule states that the execution class of a stored procedure
overrides that of alogin, which, in turn, overrides that of aclient
application.

If astored procedure has a more preferred execution class than that of the
client application process invoking it, the precedence of the client process
istemporarily raised to that of the stored procedure for the period of time
during which the stored procedure runs. This a so appliesto nested stored
procedures.

Note Exception to the precedencerule: If an execution object invokes a
stored procedure with aless preferred execution class than its own, the
execution object’s priority is not temporarily lowered.

Thisexampleillustratesthe use of the precedencerule. Supposethereisan
EC2 login, an EC3 client application, and an EC1 stored procedure.

Thelogin's attributes override those of the client application, so thelogin
is given preference for processing. If the stored procedure has a higher
base priority than the login, the base priority of the Adaptive Server
process executing the stored procedure goes up temporarily for the
duration of the stored procedure’s execution. Figure 4-4 shows how the
precedence ruleis applied.

Figure 4-4: Use of the precedence rule

_ Client Stored
login Application Procedure
EC2 EC3 EC1

Stored procedure runs with EC2

What happens when alogin with EC2 invokes a client application with
EC1 and the client application calls a stored procedure with EC3? The
stored procedure executeswith the attributes of EC2 becausethe execution
class of alogin precedes that of a client application.

65

Rules for determining precedence and scope

Scope rule

66

In addition to specifying the execution attributes for an object, you can
define its scope when you use sp_bindexeclass. The scope specifies the
entities for which the execution class bindings will be effective. The
syntax is:

sp_bindexeclass object_name, object_type,
scope, class_name

For example, you can specify that an isqgl client application run with EC1
attributes, but only when it is executed by an “sa” login. This statement
sets the scope of the EC1 hinding to the isql client application as the “sa’
login:

sp_bi ndexecl ass isql, AP, sa, ECl

Conversely, you can specify that the*sa” login run with EC1 attributes, but
only when it executes the isql client application. In this case, the scope of
the EC1 binding to the “sa” login istheisqgl client application:

sp_bi ndexecl ass sa, LG isqgl, EC1

The execution object’s execution attributes apply to all of itsinteractions
if the scopeis NULL.

When aclient application has no scope, the execution attributes bound to
it apply to any login that invokes the client application.

When alogin has no scope, the attributes apply to thelogin for any process
that the login invokes.

Thefollowing command specifiesthat Transact-SQL applications execute
with EC3 attributes for any login that invokesisgl, unlessthe loginis
bound to a higher execution class:

sp_bi ndexecl ass isql, AP, NULL, EC3

Combined with the bindings above that grant the “sa” user of isql EC1
execution attributes, and using the precedencerule, anisqgl request fromthe
“sa’ login executes with EC1 attributes. Other processes servicing isql
requests from non-“sa’ logins execute with EC3 attributes.

The scope rule states that when a client application, login, or stored
procedure is assigned multiple execution class levels, the one with the
narrowest scope has precedence. Using the scope rule, you can get the
same result if you use this command:

sp_bi ndexecl ass isql, AP, sa, ECl

CHAPTER 4 Distributing Engine Resources

Resolving a precedence conflict

Adaptive Server usesthefollowing rulesto resolve conflicting precedence
when multiple execution objects and execution classes have the same
scope.

e Execution objectsnot bound to a specific execution class are assigned
these default values:

Entity type Attribute name Default value
Client application Execution class EC2
Login Execution class EC2
Stored procedure Execution class EC2

» An execution object for which an execution class is assigned has
higher precedence than defaults. (An assigned EC3 has precedence
over an unassigned EC2).

» If aclient application and alogin have different execution classes, the
login has higher execution precedence than the client application
(from the precedence rule).

» |If astored procedure and a client application or login have different
execution classes, Adaptive Server uses the one with the higher
execution class to derive the precedence when it executes the stored
procedure (from the precedence rule).

» |If thereare multiple definitionsfor the same execution object, the one
with a narrower scope has the highest priority (from the scope rule).
For example, the first statement gives precedence to the “sa’ login
running isql over “sa’ logins running any other task:

sp_bi ndexecl ass sa, LG isql, ECl
sp_bi ndexecl ass sa, LG NULL, EC2

Examples: determining precedence

Each row in Table 4-3 contains a combination of execution objects and
their conflicting execution attributes.

The “Execution Class Attributes” columns show execution class values
assigned to a process application “AP’ belonging to login “LG”.

The remaining columns show how Adaptive Server resolves precedence.

67

Rules for determining precedence and scope

68

Table 4-3: Conflicting attribute values and Adaptive Server
assigned values

Execution class attributes Adaptive Server-assigned values

Stored Login Stored
Application Login procedure base procedure
(AP) (LG) (sp_ec) Application priority base priority
EC1 EC2 EC1 EC2 Medium High

(EC3) (Medium)
EC1 EC3 EC1 EC3 Low High

(EC2) (Medium)
EC2 EC1 EC2 EC1 High High

(EC3) (High)
EC2 EC3 EC1 EC3 Low High

(EC2) (Medium)
EC3 EC1 EC2 EC1 High High

(EC3) (High)
EC3 EC2 EC1 EC2 Medium High

(EC3) (Medium)

To test your understanding of the rules of precedence and scope, cover the
“ Adaptive Server-Assigned Values’ columnsin Table 4-3, and predict the
values in those columns. Following is a description of the scenario in the
first row, to help get you started:

e Column 1 — certain client application, AP, is specified as EC1.
e Column 2 — particular login, “LG", is specified asEC2.

e Column 3 —stored procedure, sp_ec, is specified asEC1.

At run time:

e Column 4 —task belonging to the login,” LG", executing the client
application AP, uses EC2 attributes because the class for alogin
precedes that of an application (precedence rule).

e Column5-value of column 5 implies amedium base priority for the
login.

e Column 6 —execution priority of the stored procedure sp_ec israised
to high from medium (becauseit isEC1).

CHAPTER 4 Distributing Engine Resources

If the stored procedureis assigned EC3 (as shown in parenthesesin
column 3), then the execution priority of the stored procedureis
medium (as shown in parentheses in column 6) because Adaptive
Server uses the highest execution priority of the client application or
login and stored procedure.

Example scenario using precedence rules

This section presents an example that illustrates how Adaptive Server
interprets the execution class attributes.

Figure 4-5 shows two client applications, OLTP and isql, and three
Adaptive Server logins, “L1", “sa’, and “L2".

sp_xyz isastored procedure that both the OLTP application and the isql
application need to execute.

69

Example scenario using precedence rules

Planning

70

Figure 4-5: Conflict resolution

Therest of this section describes oneway to implement the steps discussed
in Algorithm Guidelines.

The System Administrator performs the analysis described in steps 1 and
2 of the algorithm in “ Algorithm for successfully distributing engine
resources’ on page 45 and decides on the following hierarchy plan:

* TheOLTPapplicationisan EC1 application and theisql applicationis
an EC3 application.

CHAPTER 4 Distributing Engine Resources

e Login“L1" canrundifferent client applications at different timesand
has no specia performance requirements.

e Login“L2" isalesscritical user and should always run with low
performance characteristics.

e Login*“sa’ must dwaysrunasacritical user.

e Stored procedure sp_xyz should always run with high performance
characteristics. Because the isql client application can execute the
stored procedure, giving sp_xyz ahigh-performance characteristicsis
an attempt to avoid a bottleneck in the path of the OLTP client
application.

Table 4-1 summarizes the analysis and specifies the execution classto be
assigned by the System Administrator. Notice that the tuning granularity
gets finer as you descend the table. Applications have the greatest
granularity, or the largest scope. The stored procedure has the finest
granularity, or the narrowest scope.

Table 4-4: Example analysis of an Adaptive Server environment

Execution

Identifier Interactions and comments class
OLTP e Sametablesasisql EC1

« Highly critical
isql * SametablesasOLTP EC3

e Low priority
L1 * No priority assignment None
sa » Highly critica EC1
L2 * Not critical EC3
Sp_Xyz * Avoid “hot spots’ EC1

Configuration

The System Administrator executes the following system procedures to
assign execution classes (algorithm step 3):

sp_bi ndexecl ass OLTP, AP, NULL, EC1

sp_bi ndexecl ass | SQ., AP, NULL, EC3

sp_bi ndexecl ass L2, LG NULL, EC3

sp_bi ndexecl ass sa, LG NULL, EC1l

sp_bi ndexecl ass SP_XYZ, PR, sp_owner, EC1l

71

Example scenario using precedence rules

Execution characteristics

72

Following isaseries of eventsthat could take place in an Adaptive Server
environment with the configuration described in this example;

1

A client logsin to Adaptive Server as“L 1" using OLTP.

Adaptive Server determinesthat OLTP iSECL.

“L 1" doesnot have an execution class, so Adaptive Server assigns
the default class EC2. “L 1" gets the characteristics defined by
EC1 when it invokes OLTP.

If “L1"executes stored procedure sp_xyz, its priority remains
unchanged while sp_xyz executes. During execution, “L1"has
EC1 attributes throughout.

A client logsin to Adaptive Server as“L1" using isql.

Becauseisgl isEC3, and the “L 1" execution class is undefined,

“L 1" executes with EC3 characteristics. Thismeansit runsat low
priority and has affinity with the highest numbered engine (as
long as there are multiple engines).

When “L 1" executes sp_xyz, itspriority israised to high because
the stored procedureis EC1.

A client logsin to Adaptive Server as“sa’ using isq|.

Adaptive Server determines the execution classes for both isgl
andthe“sa’, using the precedence rule. Adaptive Server runsthe
System Administrator’s instance of isgl with EC1 attributes.
When the System Administrator executes sp_xyz, the priority
does not change.

A client logsin to Adaptive Server as“L2" using isql.

Because both the application and login are EC3, thereisno
conflict. “L2" executes sp_xyz at high priority.

CHAPTER 4 Distributing Engine Resources

Considerations for Engine Resource Distribution

Making execution class assignments indiscriminately does not usually
yield what you expect. Certain conditions yield better performance for
each execution object type. Table 4-5 indicates when assigning an
execution precedence might be advantageous for each type of execution
object.

Table 4-5: When assigning execution precedence is useful

Execution
object

Description

Client application

Thereislittle contention for non-CPU resources among client applications.

Adaptive Server login

One login should have priority over other logins for CPU resources.

Stored procedure

There are well-defined stored procedure “hot spots.”

Client applications:

It is more effective to lower the execution class of less-critical execution
objects than to raise the execution class of a highly critical execution
object. The sections that follow give more specific consideration to
improving performance for the different types of execution objects.

OLTP and DSS

Assigning higher execution preference to client applications can be
particularly useful when thereislittle contention for non-CPU resources
among client applications.

For example, if an OLTP application and a DSS application execute
concurrently, you might be willing to sacrifice DSS application
performance if that results in faster execution for the OLTP application.
You can assign non-preferred execution attributes to the DSS application
so that it gets CPU time only after OLTP tasks are executed.

Unintrusive client applications

Inter-application lock contention is not a problem for an unintrusive
application that uses or accesses tables that are not used by any other
applications on the system.

Assigning a preferred execution class to such an application ensures that
whenever thereis arunnable task from this application, it isfirst in the
gueue for CPU time.

73

Considerations for Engine Resource Distribution

I/0-bound client applications

If ahighly-critical application is1/0 bound and the other applications are
compute bound, the compute-bound process can use the CPU for the full
time quantum if it is not blocked for some other reason.

An 1/0O-bound process, on the other hand, gives up the CPU each time it
performs an I/O operation. Assigning a non-preferred execution class to
the compute-bound application enables Adaptive Server to run the 1/O-
bound process sooner.

Highly critical applications

If there are one or two critical execution objects among several noncritical
ones, try setting engine affinity to aspecific engine or group of enginesfor
the less critical applications. This can result in better throughput for the
highly critical applications.

Adaptive Server logins: high-priority users

If you assign preferred execution attributes to acritical user and maintain
default attributes for other users, Adaptive Server does what it can to
execute all tasks associated with the high-priority user first.

Stored procedures: “hot spots”

74

Performance i ssues associated with stored procedures arise when a stored
procedureisheavily used by one or more applications. When this happens,
the stored procedure is characterized as a hot spot in the path of an
application.

Usually, the execution priority of the applications executing the stored
procedure is in the medium to low range, so assigning more preferred
execution attributes to the stored procedure might improve performance
for the application that callsit.

CHAPTER 5 Controlling Physical Data
Placement

This describes how controlling the location of tables and indexes can

improve performance.

Topic Page
Object placement can improve performance 75
Terminology and concepts 78
Guidelines for improving I/O ierformance 78
Using serial mode 83
Creating objects on segments 83
Partitioning tables for performance 85
Space planning for partitioned tables 90
Commands for partitioning tables 93
Steps for partitioning tables 104
Special procedures for difficult situations m
Maintenance issues and partitioned tables 118

Object placement can improve performance

Adaptive Server allowsyou to control the placement of databases, tables,
and indexes across your physical storage devices. This can improve
performance by equalizing the reads and writes to disk across many
devices and controllers. For example, you can:

¢ Place adatabase's data segments on a specific device or devices,
storing the database’s |og on a separate physical device. Thisway,
reads and writesto the database'slog do not interfere with data access

e Spread large, heavily used tables across severa devices.

* Place specific tables or nonclustered indexes on specific devices. For
example, you might place atable on a segment that spans several
devices and its nonclustered indexes on a separate segment.

75

Object placement can improve performance

« Placethetext and image page chain for atable on a separate device
fromthetableitself. Thetable stores apointer to the actual datavalue
in the separate database structure, so each accessto atext or image
column requires at least two 1/Os.

« Distributetablesevenly across partitions on separate physical disksto
provide optimum parallel query performance.

For multiuser systems and multi-CPU systems that perform alot of disk
1/O, pay special attention to physical and logical device issues and the
distribution of 1/0 across devices:

e Plan balanced separation of objects across logical and physical
devices.

« Useenough physical devices, including disk controllers, to ensure
physical bandwidth.

e Useanincreased number of logical devicesto ensure minimal
contention for internal 1/0 queues.

e Useanumber of partitions that will allow parallel scans, to meset
query performance goals.

e Make use of the ability of create database to perform parallel I/0 on
asmany assix devicesat atime, to gainasignificant performanceleap
for creating multi gigabyte databases.

Symptoms of poor object placement

76

Thefollowing symptomsmay indicate that your system could benefit from
attention to object placement:

e Single-user performance is satisfactory, but response time increases
significantly when multiple processes are executed.

e Accessto amirrored disk takes twice aslong as access to an
unmirrored disk.

e Query performance degrades as system table activity increases.
* Maintenance activities seem to take along time.
e Stored procedures seem to slow down asthey create temporary tables.

* Insert performanceis poor on heavily used tables.

CHAPTER 5 Controlling Physical Data Placement

e Queriesthat runin parallel perform poorly, due to an imbalance of
data pages on partitions or devices, or they runin serial, due to
extreme imbal ance.

Underlying problems

If you are experiencing problems due to disk contention and other
problems related to object placement, check for these underlying
problems:

* Random-access (1/0 for data and indexes) and serial-access (log 1/0)
processes are using the same disks.

» Database processes and operating system processes are using the
same disks.

» Seria disk mirroring is being used because of functional
requirements.

» Database maintenance activity (logging or auditing) istaking placeon
the same disks as data storage.

* tempdb activity ison the same disk as heavily used tables.

Using sp_sysmon while changing data placement

Use sp_sysmon to determine whether data placement across physical
devicesis causing performance problems. Check the entire sp_sysmon
output during tuning to verify how the changes affect all performance
categories.

For more information about using sp_sysmon, see Chapter 38,
“Monitoring Performance with sp_sysmon.”

Pay specia attention to the output associated with the discussions:
e 1/O device contentions

e APL heaptables

¢ Last page locks on heaps

¢ Disk |.O management

Adaptive Server Monitor can also help pinpoint problems.

77

Terminology and concepts

Terminology and concepts

You should understand the following distinctions between logical or
database devices and physical devices:

The physical disk or physical deviceisthe actual hardware that stores
the data.

A database device or logical device isa piece of aphysical disk that
has been initialized (with the disk init command) for use by Adaptive
Server. A database device can be an operating system file, an entire

disk, or adisk partition.

See the Adaptive Server installation and configuration guides for
information about specific operating system constraints on disk and
file usage.

A segment is a named collection of database devices used by a
database. The database devicesthat make up asegment can belocated
on separate physical devices.

A partition isblock of storage for atable. Partitioning atable splitsit
so that multiple tasks can access it simultaneously. When partitioned
tables are placed on segments with a matching number of devices,
each partition starts on a separate database device.

Usesp_helpdevice to get information about devices, sp_helpsegment to get
information about segments, and sp_helpartition to get information about
partitions.

Guidelines for improving I/O ierformance

The major guidelines for improving I/O performance in Adaptive Server
are asfollows:

78

Spreading data across disks to avoid 1/0O contention.
Isolating server-wide 1/O from database |/O.

Separating data storage and log storage for frequently updated
databases.

Keeping random disk 1/0O away from sequential disk 1/0.
Mirroring devices on separate physical disks.

CHAPTER 5 Controlling Physical Data Placement

e Partitioning tables to match the number of physical devicesina
segment.

Spreading data across disks to avoid I/O contention

You can avoid bottlenecks by spreading data storage across multiple disks
and multiple disk controllers:

» Put databases with critical performance requirements on separate
devices. If possible, also use separate controllers from those used by
other databases. Use segments as needed for critical tables and
partitions as needed for parallel queries.

» Put heavily used tables on separate disks.
» Put frequently joined tables on separate disks.

» Use segmentsto place tables and indexes on their own disks.

Avoiding physical contention in parallel join queries

The example in Figure 5-1 illustrates ajoin of two partitioned tables,
orders_tbl and stock_tbl. There are ten worker process available: orders_tbl
has ten partitions on ten different physical devicesand isthe outer tablein
the join; stock_tbl is nonpartitioned. The worker processeswill not have a
problem with access contention on orders_tbl, but each worker process
must scan stock_tbl. There could be a problem with physical 1/0
contention if theentiretable does not fit into acache. In theworst case, ten
worker processes attempt to access the physical device on which stock_tbl
resides. You can avoid physical 1/0 contention by creating a named cache
that contains the entire table stock_tbl.

Another way to reduce or eliminate physical I/O contention isto partition
both orders_tbl and stock_tbl and distribute those partitions on different
physical devices.

79

Guidelines for improving I/O ierformance

4 - [D)

N / N

Figure 5-1: Joining tables on different physical devices

orders_tbl stock_tbl

— |

Isolating server-wide I/O from database I/O

Where to place tempdb

80

Place system databases with heavy /O regquirements on separate physical
disks and controllers than your application databases.

tempdb is automatically installed on the master device. If more spaceis
needed, tempdb can be expanded to other devices. If tempdb isexpected to
be quite active, place it on adisk that is not used for other important
database activity. Use the fastest disk available for tempdb. It is aheavily
used database that affects all processes on the server.

On some UNIX systems, |/O to operating system files is significantly
faster than I/O to raw devices. Since tempdb is always re-created, rather
than recovered, after a shutdown, you may be able to improve
performance by altering tempdb onto an operating system fileinstead of a
raw device. You should test this on your own system.

See Chapter 26, “tempdb Performance I ssues,” for more placement issues
and performance tips for tempdb.

CHAPTER 5 Controlling Physical Data Placement

Where to place sybsecurity

If you use auditing on your Adaptive Server, the auditing system performs
frequent 1/O to the sysaudits table in the sybsecurity database. If your
applications perform asignificant amount of auditing, place sybsecurity on
adisk that isnot used for tableswherefast responsetimeiscritical. Placing
sybsecurity on its own device is optimal.

Also, use the threshold manager to monitor its free space to avoid
suspending user transactions if the audit database fills up.

Keeping transaction logs on a separate disk

You can limit the size of the transaction logs by placing them on aseparate
segment, this keepsit from competing with other objects for disk space.
Placing the log on a separate physical disk:

» Improves performance by reducing I/O contention

» Ensuresfull recovery in the event of hard disk crashes on the data
device

* Speedsrecovery, since simultaneous asynchronous prefetch requests
can read ahead on both the log device and the data device without
contention

Placing the transaction | og on the same deviceasthe dataitsel f causessuch
adangerous reliability problem that both create database and alter
database require the use of the with override option to put the transaction
log on the same device as the data itself.

The log device can experience significant 1/0 on systems with heavy
update activity. Adaptive Server writes |og pages to disk when
transactions commit and may need to read log pages into memory for
deferred updates or transaction rollbacks.

If your log and dataare on the same database devices, the extents all ocated
to store log pages are not contiguous; 1og extents and data extents are
mixed. When the log is on its own device, the extents tend to be allocated
sequentially, reducing disk head travel and seeks, thereby maintaining a
higher 1/O rate.

81

Guidelines for improving I/O ierformance

Also, if log and data are on separate devices, Adaptive Server bufferslog
records for each user in a user log cache, reducing contention for writing
to the log page in memory. If log and data are on the same devices, user
log cache buffering is disabled, which resultsin serious performance
penalty on SMP systems.

If you have created a database without itslog on a separate device, seethe
System Administration Guide.

Mirroring a device on a separate disk

If you mirror data, put the mirror on a separate physical disk Thanthe
devicethat it mirrors. Disk hardwarefailure often resultsin whole physical
disksbeinglost or unavailable. Mirroring on separate disksal so minimizes
the performance impact of mirroring.

Device mirroring performance issues

82

Disk mirroring is a secure and high availability feature that allows
Adaptive Server to duplicate the contents of an entire database device.

See the System Administration Guide for more information on mirroring.

If you do not use mirroring, or use operating system mirroring, set the
configuration parameter disable disk mirroring to 1. This may yield slight
performance improvements.

Mirroring can slow the time taken to complete disk writes, since writes go
to both disks, either serially or simultaneously. Reads always come from
the primary side. Disk mirroring has no effect on the time required to read
data

Mirrored devices use one of two modes for disk writes:

* Nonserial mode can require more time to complete a write than an
unmirrored write requires. In nonserial mode, both writes are started
at the sametime, and Adaptive Server waitsfor both to complete. The
timeto complete nonserial writesis max(W1 ,\W2) —the greater of the
two /O times.

e Serial mode increases the time required to write data even more than
nonserial mode. Adaptive Server starts the first write and waits for it
to complete before starting the second write. The time required is
W1+W?2 — the sum of the two /O times.

CHAPTER 5 Controlling Physical Data Placement

Using serial mode

Despiteits performance impact, serial modeisimportant for reliability. In
fact, serial modeisthe default, becauseit guardsagainst failuresthat occur
while awrite istaking place.

Since serial mode waits until thefirst write is complete before starting the
second write, it isimpossible for asingle failure to affect both disks.
Specifying nonserial modeimproves performance, but yourisk losing data
if afailure occursthat affects both writes.

Warning! Unless you are sure that your mirrored database system does
not need to be absolutely reliable, do not use nonserial mode.

Creating objects on segments

A segment isalabel that pointsto one or more database devices.

Each database can use up to 32 segments, including the 3 segmentsthat are
created by the system (system, log segment, and default) when a database
is created. Segments label space on one or more logical devices.

Tables and indexes are stored on segments. If no segment is named in the
create table Or create index statement, then the objects are stored on the
default segment for the database. Naming a segment in either of these
commands creates the object on the segment. The sp_placeobject system
procedure causes all future space allocations to take place on a specified
segment, so tables can span multiple segments.

A System Administrator must initialize the device with disk init, and the
disk must be allocated to the database by the System Administrator or the
Database Owner with create database or alter database.

Once the devices are available to the database, the database owner or
object owners can create segments and place objects on the devices.

If you create a user-defined segment, you can place tables or indexes on
that segment with the create table or create index commands:

create table tableA(...) on segl
create nonclustered index nmyix on tableB(...)
on seg2

83

Creating objects on segments

Using segments

Separating tables an

84

By controlling the location of critical tables, you can arrange for these
tables and indexes to be spread across disks.

Segments can improve throughput by:

« Splitting largetables acrossdisks, including tablesthat are partitioned
for parallel query performance

e Separating tables and their nonclustered indexes across disks

« Placing the text and image page chain on a separate disk from the
tableitself, where the pointers to the text values are stored

In addition, segments can control space usage, as follows:

« Atablecan never grow larger than its segment allocation; You can use
segments to limit table size.

« Tables on other segments cannot impinge on the space allocated to
objects on another segment.

* Thethreshold manager can monitor space usage.

d indexes

Use segmentsto isolate tables on one set of disksand nonclustered indexes
on another set of disks. You cannot place a clustered index on a separate
segment than its data pages. When you create a clustered index, using the
on segment_name clause, the entire table is moved to the specified
segment, and the clustered index treeis built there.

You can improve performance by placing nonclustered indexes on a
separate segment.

CHAPTER 5 Controlling Physical Data Placement

Splitting large tables across devices

Segments can span multiple devices, so they can be used to spread data
across one or more disks. For large, extremely busy tables, this can help
balance the I/O load. For parallel queries, creating segments that include
multiple devicesis essential for I/O parallelism during partitioned-based
scans.

See the System Administration Guide for more information.

Moving text storage to a separate device

When atable includes atext, image, or Java off-row datatype, the table
itself stores a pointer to the data value. The actual datais stored on a
separate linked list of pages called a LOB (large object) chain.

Writing or reading aL OB value requires at | east two disk accesses, oneto
read or write the pointer and one for subsequent reads or writes for the
data. If your application frequently reads or writes these values, you can
improve performance by placing the LOB chain on a separate physical
device. Isolate LOB chains on disks that are not busy with other
application-related table or index access.

When you create a table with LOB columns, Adaptive Server creates a
row in sysindexes for the object that storesthe LOB data. Thevalueinthe
name columnisthe table name prefixed with a“t”; theindid isalways 255.
Notethat if you have multiple LOB columnsin asingletable, thereisonly
one object used to store the data. By default, this object is placed on the
same segment as the table.

You can use sp_placeobject to move all future allocations for the LOB
columns to a separate segment.

See the System Administraton Guide for more information.

Partitioning tables for performance

Partitioning a table can improve performance for several types of
processes. The reasons for partitioning atable are:

85

Partitioning tables for performance

User transparency

86

e Partitioning allows parallel query processing to access each partition
of the table. Each worker process in a partitioned-based scan reads a
separate partition.

e Partitioning makesit possible to load atable in parallel with bulk
copy.

For more information on parallel bcp, see the Utility Programs
manual.

e Partitioning makesit possibleto distribute atable’s 1/0 over multiple
database devices.

e Partitioning provides multiple insertion points for a heap table.

The tables you choose to partition depend on the performance issues you
encounter and the performance goals for the queries on the tables.

The following sections explain the commands needed to partition tables
and to maintain partitioned tables, and outline the steps for different
situations.

See “Guidelines for parallel query configuration” on page 532 for more
information and examples of partitioning to meet specific performance
goals.

Adaptive Server’s management of partitioned tablesistransparent to users
and applications. Partitioned tables do not appear different from
nonpartitioned tables when queried or viewed with most utilities.
Exceptions are:

e If queries do not include order by or other commands that require a
sort, data returned by a parallel query may not in the same order as
data returned by serial queries.

¢ Thedbcc checktable and dbcc checkdb commands list the number of
data pages in each partition.

See the System Administration Guide for information about dbcc.

e sp_helpartition lists information about a table’s partitions.

CHAPTER 5 Controlling Physical Data Placement

e showplan output displays messages indicating the number of worker
processes uses for queries that are executed in parallel, and the
statistics io “Scan count” shows the number of scans performed by
worker processes.

e Pardlée bulk copy alows you to copy to aparticular partition of a
heap table.

Partitioned tables and parallel query processing

Parallel query processing on partitioned tables can potentially produce
dramatic improvementsin query performance. Partitions increase
simultaneous access by worker processes. When enough worker processes
are available, and the value for the max parallel degree configuration
parameter is set equal to or greater than the number of partitions, one
worker process scans each of the table’s partitions.

When the partitions are distributed across physical disks, the reduced 1/0
contention further speeds parallel query processing and achieves a high
level of pardlelism.

The optimizer can choose to use parallel query processing for a query
against a partitioned table when parallel query processing is enabled. The
optimizer considers a parallel partition scan for a query when the base
table for the query is partitioned, and it considers a parallel index scan for
auseful index.

See Chapter 23, “Parallel Query Optimization,” for more information on
how parallel queries are optimized.

Distributing data across partitions

Creating a clustered index on a partitioned table redistributes the table’s
data evenly over the partitions. Adaptive Server determinestheindex key
ranges for each partition so that it can distribute the rows equally in the
partition. Each partition is assigned at least one exclusive deviceiif the
number of devicesin the segment isequal to or greater than the number of
partitions.

If you create the clustered index on an empty partitioned table, Adaptive
Server printsawarning advising you to re-create the clustered index after
loading datainto the table, as all the datawill be inserted into the first
partition until you re-create the clustered index.

87

Partitioning tables for performance

If you partition atable that already has a clustered index, all pagesin the
table are assigned to the first partition. The alter table...partition command
succeeds and prints awarning. You must drop and recreate the index to
redistribute the data.

Improving insert performance with partitions

All insert commands on an allpages-locked heap table attempt to insert the
rows on the last page of the table. If multiple usersinsert data
simultaneously, each new insert transaction must wait for the previous
transaction to complete in order to proceed.

Partitioning an allpages-locked heap table improves the performance of
concurrent inserts by reducing contention for the last page of a page chain.

For data-only-locked tables, Adaptive Server stores one or more hints that
point to a page where an insert was recently performed. Blocking during
inserts on data-only-locked tables occurs only with high rates of inserts.

Partitioning data-only-locked heap tables increases the number of hints,
and can help if inserts are blocking.

How partitions address page contention

When atransaction inserts data into a partitioned heap table, Adaptive

Server randomly assigns the transaction to one of the table's partitions.
Concurrent inserts are less likely to block, since multiple last pages are
available for inserts.

Selecting heap tables to partition

88

Allpages-locked heap tables that have large amounts of concurrent insert
activity will benefit from partitioning. Insert rates must be very high
before significant blocking takes place on data-only-locked tables. If you
are not sure whether thetablesin your database system might benefit from
partitioning:

» Usesp_sysmon to look for last page locks on heap tables.
See “Lock management” on page 964.

* Usesp_object_stats to report on lock contention.

CHAPTER 5 Controlling Physical Data Placement

See “Ildentifying tables where concurrency is a problem” on page
264.

Restrictions on partitioned tables

You cannot partition Adaptive Server system tables or tablesthat are
already partitioned. Once you have partitioned atable, you cannot use any
of the following Transact-SQL commands on the table until you
unpartition it:

* sp_placeobject
* truncate table
* alter table table_name partition n

See “alter table...unpartition Syntax” on page 94 for more information.

Partition-related configuration parameters

If you require alarge number of partitions, you may want to change the
default values for the partition groups and partition spinlock ratio
configuration parameters.

See the System Administration Guide for more information.

How Adaptive Server distributes partitions on devices

When you issue an alter table...partition command, Adaptive Server creates
the specified number of partitions in the table and distributes those
partitions over the database devices in the table€'s segment. Adaptive
Server assigns partitions to devices so that they are distributed evenly
across the devicesin the segment.

Table 5-1 illustrates how Adaptive Server assigns 5 partitionsto 3, 5, and
12 devices, respectively.

89

Space planning for partitioned tables

Table 5-1: Assigning partitions to segments

Partition ID Device (D) Assignments for Segment With

3 Devices 5 Devices 12 Devices
Partition 1 D1 D1 D1, D6, D11
Partition 2 D2 D2 D2, D7, D12
Partition 3 D3 D3 D3, D8, D11
Partition 4 D1 D4 D4, D9, D12
Partition 5 D2 D5 D5, D10, D11

M atching the number of partitionsto the number of devicesin the segment
provides the best 1/0O performance for parallel queries.

You can partition tablesthat use thetext, image, or Java off-row datatypes.
However, the columns themselves are not partitioned—they remain on a
single page chain.

RAID devices and partitioned tables

Table5-1 and other statementsin this chapter describe the Adaptive Server
logical devicesthat map to asingle physical device.

A striped RAID device may contain multiple physical disks, but it appears
to Adaptive Server asasingle logical device. For astriped RAID device,
you can use multiple partitions on the single logical device and achieve
good parallel query performance.

To determine the optimum number of partitions for your application mix,
start with one partition for each devicein the stripe set. Use your operating
system utilities (vmstat, sar, and iostat on UNIX; Performance Monitor on
Windows NT) to check utilization and latency.

To check maximum devicethroughput, use select count(*), using the (index
table_name) clause to force atable scan if a nonclustered index exists.
This command requires minimal CPU effort and creates very little
contention for other resources.

Space planning for partitioned tables

90

When planning for partitioned tables, the two major issues are:

CHAPTER 5 Controlling Physical Data Placement

Read-only tables

¢ Maintaining load balance across the disk for partition-based scan
performance and for 1/O parallelism

¢ Maintaining clustered indexes requires approximately 120% of the
space occupied by the table to drop and re-create the index or to run
reorg rebuild

How you make these decisions depends on:
e Theavailahility of disk resourcesfor storing tables
e The nature of your application mix

You need to estimate how often your partitioned tables need maintenance:
some applications need frequent index re-creation to maintain balance,
while others need little maintenance.

For those applications that need frequent load balancing for performance,
having spaceto re-create aclustered index or run reorg rebuild providesthe
speediest and easiest method. However, since creating clustered indexes
requires copying the data pages, the space available on the segment must
be equal to approximately 120% of the space occupied by the table.

See " Determining the space available for maintenance activities’ on page
370 for more information.

The following descriptions of read-only, read-mostly, and random data
modification provide a general picture of the issuesinvolved in object
placement and in maintaining partitioned tables.

See “ Steps for partitioning tables’ on page 104 for more information
about the specific tasks required during maintenance.

Tablesthat areread only, or that arerarely changed, can completely fill the
space available on a segment, and do not require maintenance. If atable
does not require a clustered index, you can use parallel bulk copy to
completely fill the space on the segment.

If aclustered index is needed, the table’s data pages can occupy up to 80%
of the space in the segment. The clustered index tree requires about 20%
of the space used by the table.

Thissize varies, depending on the length of the key. Loading the datainto
the tableinitially and creating the clustered index requires several steps,
but once you have performed these steps, maintenance is minimal.

91

Space planning for partitioned tables

Read-mostly tables

The guidelines above for read-only tables also apply to read-mostly tables
with very few inserts. The only exceptions are as follows:

If there are inserts to the table, and the clustered index key does not
balance new space allocations evenly across the partitions, the disks
underlying some partitions may become full, and new extent
alocations will be made to adifferent physical disk. Thisprocessis
called extent stealing.

In huge tables spread across many disks, asmall percentage of
allocationsto other devicesis not a problem. Extent stealing can be
detected by using sp_helpsegment to check for devices that have no
spaceavailableand by using sp_helpartition to check for partitionsthat
have disproportionate numbers of pages.

If theimbalancein partition sizeleadsto degradationin parallel query
response times or optimization, you may want to balance the
distribution by using one of the methods described in “ Steps for
partitioning tables’ on page 104.

If the table is a heap, the random nature of heap table inserts should
keep partitions balanced.

Take care with large bulk copy in operations. You can use parallel
bulk copy to send rows to the partition with the smallest number of
pages to balance the data across the partitions. See “Using bcp to
correct partition balance” on page 99.

Tables with random data modification

Tables with clustered indexes that experience many inserts, updates, and
deletes over time tend to lead to data pages that are approximately 70 to
75% full. This can lead to performance degradation in several ways:

92

More pages must be read to access a given number of rows, requiring
additional 1/O and wasting data cache space.

On tables that use allpages |ocking, the performance of large 1/0 and
asynchronous prefetch suffers because the page chain crosses extents
and alocation units.

CHAPTER 5 Controlling Physical Data Placement

Buffers brought in by large 1/0 may be flushed from cache before all
of the pages are read. The asynchronous prefetch look-ahead set size
is reduced by cross-allocation unit hops while following the page
chain.

Once the fragmentation starts to takeits toll on application performance,
you need to perform maintenance. If that requiresdropping and re-creating
the clustered index, you need 120% of the space occupied by the table.

I F space is unavail able, maintenance becomes more complex and takes
longer. The best, and often cheapest, solution isto add enough disk
capacity to provide room for the index creation.

Commands for partitioning tables

Creating and maintaining partitioned tables involves using a mix of the
following types of commands:

» Commands to partition and unpartition the table

» Commands to drop and re-create clustered indexes to maintain data
distribution on the partitions and/or on the underlying physical
devices

» Pardlé bulk copy commandsto load data into specific partitions

» Commands to display information about data distribution on
partitions and devices

» Commands to update partition statistics

This section presents the syntax and examples for the commands you use
to create and maintain partitioned tables.

For different scenarios that require different combinations of these
commands, see “ Steps for partitioning tables’ on page 104.

Use the alter table command to partition and unpartition atable.

alter table...partition syntax
The syntax for using the partition clause to alter table is:

alter table table_name partition n

93

Commands for partitioning tables

wheretable_nameisthe name of thetableand nisthe number of partitions
you are creating.

Any datathat isin the table before you invoke alter table remainsin the
first partition. Partitioning atable does not move the table's data— it will
still occupy the same space on the physical devices.

If you are creating partitioned tables for parallel queries, you may need to
redistribute the data, either by creating aclustered index or by copying the
data out, truncating the table, and then copying the data back in.

You cannot include the alter table...partition command in a user-defined
transaction.

Thefollowing command creates 10 partitions for a table named historytab:

alter table historytab partition 10

alter table...unpartition Syntax

Unpartitioning a table concatenates the table’s multiple partitionsinto a
single partition. Unpartitioning atable does not change the location of the
data

The syntax for using the unpartition clause to alter table is:
alter table table_name unpartition
For example, to unpartition a table named historytab, enter:

alter table historytab unpartition

Changing the number of partitions

94

To change the number of partitionsin atable, first unpartition the table
using alter table...unpartition.

Then use alter table...partition, specifying the new number of partitions.
This does not move the existing datain the table.

You cannot use the partition clause with atable that is already partitioned.

For example, if atable named historytab contains 10 partitions, and you
want the table to have 20 partitions, enter these commands:

alter table historytab unpartition
alter table historytab partition 20

CHAPTER 5 Controlling Physical Data Placement

Distributing data evenly across partitions

Good parallel performance dependson afairly even distribution of dataon
atable'spartitions. Thetwo major methodsto achievethisdistribution are;

¢ Creating aclustered index on a partitioned table. The data should
already beinthe table.

e Usingparalld bulk copy, specifying the partitionswhere the dataisto
be loaded.

sp_helpartition tablename reports the number of pages on each partitionin
atable.

Commands to create and drop clustered indexes

You can create aclustered index using the create clustered index command
or by creating a primary or foreign key constraint with alter table...add
constraint. The steps to drop and re-create it are dightly different,
depending on which method you used to create the existing clustered
index.

Cresating a clustered index on a partitioned table requires aparallel sort.
Set configuration parameters and set options as shown before you issue
the command to create the index:

» Set number of worker processes and max parallel degree to at least the
number of partitionsin the table, plus 1.

» Execute sp_dboption "select into/bulkcopy/plisort", true, and run
checkpoint in the database.

For more information on configuring Adaptive Server to allow parallel
execution, see “Controlling the degree of parallelism” on page 522.

See Chapter 24, “Parallel Sorting,” for additional information on parallel
sorting.

If your queries do not use the clustered index, you can drop the index
without affecting the distribution of data. Evenif you do not plan to retain
the clustered index, be sure to create it on akey that has avery high
number of data values. For example, a column such as “sex”, which has
only thevalues“M” and “F”, will not provide agood distribution of pages
across partitions.

Creating an index using parallel sort isaminimally logged operation and
is not recoverable. You should dump the database when the command
compl etes.

95

Commands for partitioning tables

Using reorg rebuild on data-only-locked tables

The reorg rebuild command copies data rows in data-only-locked tablesto
new data pages. If thereis a clustered index, rows are copied in clustered
key order.

Running reorg rebuild redistributes dataevenly on partitions. The clustered
index and any nonclustered indexes are rebuilt. To run reorg rebuild on the
table, provide only the table name:

reorg rebuild titles

Using drop index and create clustered index
If the index on the table was created with create index:
1 Drop theindex:
drop i ndex huge_tab. cix
2 Createthe clustered index, specifying the segment:

create clustered index cix
on huge_tab(key_col)
on big_denp_seg

Using constraints and alter table

If theindex on the table was created using a constraint, follow these steps
to re-create a clustered index:

1 Drop the constraint:
alter table huge_tab drop constraint primkey
2 Re-create the constraint, thereby re-creating the index:

alter table huge_tab add constraint primkey
primary key clustered (key_col)
on bi g_denp_seg

Special concerns for partitioned tables and clustered indexes

Creating a clustered index on a partitioned table is the only way to
redistribute data on partitions without reloading the data by copying it out
and back into the table.

When you are working with partitioned tables and clustered indexes, there
are two special concerns:

96

CHAPTER 5 Controlling Physical Data Placement

Remember that the datain a clustered index “follows” theindex, and
that if you do not specify a segment in create index or alter table, the
default segment is used as the target segment.

You can use the with sorted_data clause to avoid sorting and copying
data while you are creating a clustered index. This saves time when
the dataisalready in clustered key order. However, when you need to
create a clustered index to load balance the data on partitions, do not
use the sorted_data clause.

See “Creating an index on sorted data’ on page 359 for options.

Using parallel bcp to copy data into partitions

Loading datainto a partitioned table using parallel bep letsyou direct the
datato a particular partition in the table.

Before you run parallel bulk copy, the table should be located on the
segment, and it should be partitioned.

You should drop all indexes, so that you do not experience failures
due to index deadlocks.

Use alter table...disable trigger so that fast, minimally-logged bulk
copy is used, instead of slow bulk copy, which is completely logged.

You may also want to set the database option trunc log on chkpt to keep
the log from filling up during large loads.

You can use operating system commandsto split thefile into separate
files, and then copy eachfile, or usethe -F (first row) and -L (last row)
command-line flags for bep.

Whichever method you choose, be sure that the number of rows sent to
each partition is approximately the same.

Here is an example using separate files:

bcp nmydb. . huge_tab:1 in bigfilel
bcp nydb. . huge_tab:2 in bigfile2

bcp nmydb. . huge_tab: 10 in bigfilel0

This example uses thefirst row and last row command-line arguments on
asinglefile:

bcp nydb. . huge_tab:1 in bigfile -F1 -L100000
bcp nmydb. . huge_tab:2 in bigfile -F100001 -L200000

97

Commands for partitioning tables

Parallel copy and locks

bcp nmydb. . huge_tab: 10 in bigfile -F900001 -L1000000

If you have spaceto split the fileinto multiplefiles, copying from separate
filesis much faster than using the first row and last row command-line
arguments, since bcp needsto parse each line of theinput file when using
-F and -L. This parsing process can be very slow, almost negating the
benefits from parallel copying.

Starting many current parallel bcp sessions may cause Adaptive Server to
run out of locks.

When you copy in to atable, bcp acquires an exclusive intent lock on the
table, and either page or row locks, depending on the locking scheme. If
you are copying in very large tables, and especially if you are performing
simultaneous copies into a partitioned table, this can require avery large
number of locks.

To avoid running out of locks:

* Set the number of locks configuration parameter high enough, or

e Usethe-b batchsize bep flag to copy smaller batches. If you do not
use the -b flag, the entire copy operation is treated as a single batch.

For more information on bcp, see the Utility Programs manual.

Getting information about partitions

partitionid firstpage

98

sp_helpartition prints information about table partitions. For partitioned
tables, it shows the number of data pagesin the partition and summary
information about data distribution. I ssue sp_helpartition, giving the table
name. This example shows data distribution immediately after creating a
clustered index:

sp_hel partition sales
control page ptn_data_pages

6601 6600 2782
13673 13672 2588
21465 21464 2754
29153 29152 2746
36737 36736 2705

CHAPTER 5 Controlling Physical Data Placement

© o0o~NO»

(9 rows affected)

44425 44424 2732
52097 52096 2708
59865 59864 2755
67721 67720 2851

Partitions Average Pages Maxi mum Pages M ni num Pages Rati o (Max/ Avg)

Using bcp to correc

partitionid firstpage

2735 2851 2588 1. 042413

sp_helpartition shows how evenly datais distributed between partitions.
Thefinal columninthelast row showstheratio of the average columnsize
to the maximum column size. Thisratio is used to determine whether a
query can berunin parallel. If the maximum istwice as large as the
average, the optimizer does not choose a parallel plan.

Uneven distribution of data across partitions is called partition skew.

If atableisnot partitioned, sp_helpartition prints the message “Object is
not partitioned.” When used without atable name, sp_helpartition prints
the names of all user tablesin the database and the number of partitionsfor
each table. sp_help calls sp_helpartition when used with atable name.

t partition balance

If you need to load additional datainto a partitioned table that does not
have clustered indexes, and sp_helpartition shows that some partitions
contain many more pages than others, you can use the bulk copy session
to help balance number of rows on each partition.

The following example shows that the table has only 487 pages on one
partition, and 917 on another:

control page ptn_dat a_pages

1 189825 189824 812
2 204601 204600 487
3 189689 189688 917

(3 rows affected)

Partitions Average Pages Maxi mum Pages M ni mum Pages Rati o (Max/ Avg)

3 738 917 487 1. 242547

The number of rows to add to each partition can be computed by:

99

Commands for partitioning tables

« Determining the average number of rows that would bein each
partition if they were evenly balanced, that is, the sum of the current
rows and the rows to be added, divided by the number of partitions

e Estimating the current number of rows on each partition, and
subtracting that from the target average

The formula can be summarized as:

Rows to add = (total _old_rows + total _new rows)/# of partitions
- rows_in_this_partition

This sample procedure uses values stored in systabstats and syspartitions
to perform the calculations:

create procedure hel p_skew @bj ect _name varchar (30), @ew ows int
as
declare @ows int, @ages int, @owsperpage int,
@um parts int

select @ows = rowcnt, @ages = pagecnt

from systabstats

where id = object_id(@bject_nanme) and indid in (0,1)
sel ect @owsperpage = fl oor (@ ows/ @ages)
sel ect @um parts = count(*) from syspartitions

where id = object_id(@bject_nane)

select partitionid, (@ows + @ewows)/ @um parts -
ptn_data_pgs(id, partitionid)*@owsperpage as rows_to_add
from syspartitions
where id = object_id (@bject_nane)

Use this procedure to determine how many rowsto add to each partition
in the customer table, such aswhen 18,000 rows need to be copied in. The
results are shown below the syntax.

hel p_skew custoner, 18000
partitionid rows_to_add------------------

1 5255
2 9155
3 3995

Note If the partition skew islarge, and the number of rowsto be added is
small, this procedure returns negative numbers for those rowsthat contain
more than the average number of final rows.

Query results are more accurate if you run update statistics and update
partition statistics o that table and partition statistics are current.

100

CHAPTER 5 Controlling Physical Data Placement

With the results from help_skew, you can then split the file containing the
data to beloaded into separate files of that length, or use the -F (first) and
-L (last) flags to bep.

See “Using bcp to correct partition balance” on page 99.

Checking data distribution on devices with sp_helpsegment

At times, the number of data pagesin a partition can be balanced, while
the number of data pages on the devicesin a segment becomes
unbal anced.

You can check the free space on devices with sp_helpsegment. This
portion of the sp_helpsegment report for the same table shown in the
sp_helpartition example above shows that the distribution of pages on the
devices remains balanced:

devi ce si ze free_pages
pubt une_det ai | 01 15. OMB 4480
pubt une_det ai | 02 15. OMB 4872
pubt une_det ai | 03 15. OMB 4760
pubt une_det ai | 04 15. OMB 4864
pubt une_det ai | 05 15. OMB 4696
pubt une_det ai | 06 15. OMB 4752
pubt une_det ai | 07 15. OMB 4752
pubt une_det ai | 08 15. OMB 4816
pubt une_det ai | 09 15. OMB 4928

Effects of imbalance of data on segments and partitions

An imbalance of pages in partitions usually occurs when partitions have
run out of space on the device, and extents have been allocated on another
physical device. Thisis called extent stealing.

Extent stealing can take place when data is being inserted into the table
with insert commands or bulk copy and while clustered indexes are being
created.

The effects of an imbalance of pagesin table partitionsis:

e Thepartition statistics used by the optimizer are based on the statistics
displayed by sp_helpartition.

101

Commands for partitioning tables

Aslong as datadistribution is balanced across the partitions, parallel
query optimization will not be affected. The optimizer chooses a
partition scan as long as the number of pages on the largest partition
is less than twice the average number of pages per partition.

e |/O paralelism may be reduced, with additional 1/0Os to some of the
physical devices where extent stealing placed data.

e Re-creating a clustered index may not produce the desired
rebalancing across partitions when some partitions are nearly or
completely full.

See “Problems when devices for partitioned tables are full” on page
115 for more information.

Determining the number of pages in a partition

102

You can use the ptn_data_pgs function or the dbcc checktable and dbcc
checkdb commands to determine the number of data pagesin atable’'s
partitions.

See the System Administration Guide for information about dbcc.

Theptn_data_pgs function returnsthe number of data pages on apartition.
Itssyntax is:

ptn_data_pgs(object_id, partition_id)

This example prints the number of pagesin each partition of the sales
table:

sel ect partitionid,

ptn_data_pgs(object _id("sales"), partitionid) Pages
from syspartitions

where id = object_id("sal es")

For a complete description of ptn_data_pgs, see the Adaptive Server
Reference Manual.

Thevaluereturned by ptn_data_pgs may beinaccurate. If you suspect that
the value isincorrect, run update partition statistics, dbcc checktable, dbcc
checkdb, or dbcc checkalloc first, and then use ptn_data_pgs.

CHAPTER 5 Controlling Physical Data Placement

Updating partition statistics

Adaptive Server keeps statistics about the distribution of pages within a
partitioned table and uses these statistics when considering whether to use
aparallel scanin query processing. When you partition atable, Adaptive
Server stores information about the data pages in each partition in the
control page.

The statistics for a partitioned table may become inaccurate if any of the
following occurs:

¢ Thetableisunpartitioned and then immediately repartitioned.
¢ A large number of rows are del eted.

¢ A large number of rows are updated, and the updates are not in-place
updates.

¢ A large number of rows are bulk copied into some of the partitions
using parallel bulk copy.

e Insertsare frequently rolled back.

If you suspect that query plans may be less than optimal due to incorrect
statistics, run the update partition statistics command to update the
information in the control page.

The update partition statistics command updates information about the
number of pagesin each partition for a partitioned table.

The update all statistics command al so updates partition statistics.

Re-creating the clustered index or running reorg rebuild automatically
redistributes the data within partitions and updates the partition statistics.
dbcc checktable, dbce checkdb, and dbcc checkalloc also update partition
statistics as they perform checks.

Syntax for update partition statistics
[tssyntax is:

update partition statistics table_name
[partition_number]

Use sp_helpartition to see the partition numbers for atable.

For a complete description of update partition statistics, see the Adaptive
Server Reference Manual.

103

Steps for partitioning tables

Steps for partitioning tables

You should plan the number of devicesfor the table's segment to balance
1/0 performance. For best performance, use dedicated physical disks,
rather than portions of disks, as database devices, and make sure that no
other objects share the devices with the partitioned table.

See the System Administration Guide for guidelinesfor creating segments.

The stepsto follow for partitioning a table depends on where the table is
when you start. This section provides examples for the following
situations:

The table has not been created and populated yet.

Thetableexists, but it is not on the database segment where you want
the table to reside.

The table exists on the segment where you want it to reside, and you
want to redistribute the data to improve performance, or you want to
add devicesto the segment.

Note The following sections provide procedures for a number of
situations, including those in which severe space limitations in the
database make partitioning and creating clustered indexes very
difficult. These complex procedures are needed only in special cases.
If you have ample room on your database devices, the process of
partitioning and maintaining partitioned table performance requires
only afew simple steps.

Backing up the database after partitioning tables

Using fast bulk copy and creating indexesin parallel both make minimally
logged changes to the database, and require afull database dump.

Table does not exist

104

If you change the segment mapping while you are working with
partitioned tables, you should also dump the master database, since
segment mapping information is stored in sysusages.

To create a new partitioned table and load the data with bcp:

CHAPTER 5 Controlling Physical Data Placement

Create the table on the segment, using the on segment_name clause.
For information on creating segments, see “ Creating objects on
segments” on page 83.

Partition the table, with one partition for each physical devicein the
segment.

See “alter table...partition syntax” on page 93.

Note If theinput datafileisnot in clustered key order, and the table
will occupy morethan 40% of the space on the segment, and you need
aclustered index.

See “Special procedures for difficult situations’ on page 111.
Copy the datainto the table using parallel bulk copy.

See “Using parallel bcp to copy datainto partitions’” on page 97 for
examples using bep.

If you do not need a clustered index, use sp_helpartition to verify that
the datais distributed evenly on the partitions.

See “ Getting information about partitions” on page 98.

If you need a clustered index, the next step depends on whether the
datais already in sorted order and whether the datais well balanced
on your partitions.

If theinput datafileisin index key order and the distribution of data
acrossthe partitionsis satisfactory, you can usethe sorted_data option
and the segment name when you create the index. This combination
of optionsrunsin serial, checking the order of the keys, and
simultaneously building the index tree. It does not need to copy the
datainto key order, so it does not perform load balancing. If you do
not need referential integrity constraints, you can use create index.

See “Using drop index and create clustered index” on page 96.

To create a clustered index with referential integrity constraints, use
alter table...add constraint.

See “Using constraints and alter table” on page 96.

If your datawas not in index key order when it was copied in, verify
that there is enough room to create the clustered index while copying
the data.

105

Steps for partitioning tables

Use sp_spaceused to see the size of the table and sp_helpsegment to
see the size of the segment. Creating a clustered index requires
approximately 120% of the space occupied by the table.

If thereisnot enough space, follow the stepsin “If thereisnot enough
space to re-create the clustered index” on page 108.

5 Create any nonclustered indexes.
6 Dump the database.

Table exists elsewhere in the database

106

If the table exists on the default segment or some other segment in the
database, follow these stepsto move the datato the partition and distribute
it evenly:

1 If thetableisalready partitioned, but has a different number of
partitions than the number of devices on the target segment,
unpartition the table.

See “alter table...unpartition Syntax” on page 94.

2 Partition the table, matching the number of devices on the target
segment.

See “alter table...partition syntax” on page 93.

3 If aclustered index exists, drop the index. Depending on how your
index was created, use either drop index or alter table...drop constraint.

See“Using drop index and create clustered index” on page 96 or alter
table...drop constraint and “ Using constraints and alter table” on page
96.

4 Create or re-create the clustered index with the on segment_name
clause. When the segment name is different from the current segment
where the table is stored, creating the clustered index performs a
parallel sort and distributes the data evenly on the partitions as it
copies the rows to match the index order. This step re-creates the
nonclustered indexes on the table.

See “Distributing data evenly across partitions’ on page 95.
5 If you do not need the clustered index, you can drop it.
6 Dump the database.

CHAPTER 5 Controlling Physical Data Placement

Table exists on the segment

Redistributing data

If the table exists on the segment, you may need to:

« Redigtribute the databy re-creating a clustered index or by using bulk
copy, or

¢ Increase the number of devicesin the segment.

If you need to redistribute data on partitions, your choice of method
depends on how much space the data occupies on the partition. If the space
the table occupies is less than 40 to 45% of the space in the segment, you
can create a clustered index to redistribute the data.

If the table occupies more than 40 to 45% of the space on the segment, you
need to bulk copy the data out, truncate the table, and copy the datain
again. The steps you take depend on whether you need a clustered index
and whether the datais aready in clustered key order.

Use sp_helpsegment and sp_spaceused to seeif thereis room to create a
clustered index on the segment.

If there is enough space to create or re-create the clustered index

If there is enough space, see “Distributing data evenly across partitions’
on page 95 for the steps to follow. If you do not need the clustered index,
you can drop it without affecting the data distribution.

Dump the database after creating the clustered index.

If there is not enough space on the segment, but space exists elsewhere on the server

If there is enough space for a copy of the table, you can copy the table to
another location and then re-create the clustered index to copy the data
back to the target segment.

The steps vary, depending on the location of the temporary storage space:
* Onthe default segment of the database or in tempdb
* On other segments in the database

Using the default segment or tempdb

1 Useselectinto to copy the table to the default segment or to tempdb.

107

Steps for partitioning tables

Using space on another segment

select * into tenp_sales fromsales
or

select * into tenpdb..tenp_sales from sal es
Drop the original table.
Partition the copy of the table.

Createthe clustered index on the segment where you want the table to
reside.

Use sp_rename to change the table's name back to the original name.

Dump the database.

If there is space avail able on another segment:

1

Create a clustered index, specifying the segment where the space
exists. This moves the table to that location.

Drop the index.

Re-create the clustered index, specifying the segment where you want
the datato reside.

Dump the database.

If there is not enough space to re-create the clustered index

108

If there is hot enough space, and you need a to re-create a clustered index

on the tables:
1 Copy out the data using bulk copy.
2 Unpartition the table.
See “alter table...unpartition Syntax” on page 94.
Truncate the table with truncate table.
4 Drop the clustered index using drop index oOr alter table...drop
constraint.
Then, drop nonclustered indexes, to avoid deadlocking during the
parallel bulk copy sessions.
See “Distributing data evenly across partitions’ on page 95.
5 Repartition the table.

CHAPTER 5 Controlling Physical Data Placement

8
9

See “alter table...partition syntax” on page 93.

Copy the datainto the table using parallel bulk copy. You must take
care to copy the datato each segment in index key order, and specify
the number of rows for each partition to get good distribution.

See “Using parallel bcp to copy datainto partitions’” on page 97.

Re-create the index using the with sorted_data and on segment_name
clauses. This command performs a serial scan of the table and builds
the index tree, but does not copy the data.

Do not specify any of the clauses that require data copying (fillfactor,
ignore_dup_row, and max_rows_per_page).

Re-create any nonclustered indexes.

Dump the database.

If there is not enough space, and no clustered index is required

If there is no clustered index, and you do not need to create one:

1
2

Copy the data out using bulk copy.

Unpartition the table.

See “alter table...unpartition Syntax” on page 94.
Truncate the table with truncate table.

Drop nonclustered indexes, to avoid deadl ocking during the parallel
bulk copy in sessions.

Repartition the table.

See “alter table...partition syntax” on page 93.

Copy the datain using parallel bulk copy.

See “Using parallel bep to copy datainto partitions’ on page 97.
Re-create any nonclustered indexes.

Dump the database.

If there is no clustered index, not enough space, and a clustered index is needed

To changeindex keyson the clustered index of apartitioned table, or if you
want to create an index on atable that has been stored as a heap,
performing an operating-system level sort can speed the process.

109

Steps for partitioning tables

Creating a clustered index requires 120% of the space used by thetableto
create a copy of the data and build the index tree.

If you have accessto a sort utility at the operating-system level:

1
2

9

Copy the data out using bulk copy.

Unpartition the table.

See “alter table...unpartition Syntax” on page 94.
Truncate the table with truncate table.

Drop nonclustered indexes, to avoid deadlocking during the parallel
bulk copy in sessions.

Repartition the table.

See “alter table...partition syntax” on page 93.

Perform an operating system sort on thefile.

Copy the datain using parallel bulk copy.

See “Using parallel bep to copy datainto partitions’ on page 97.

Re-create the index using the sorted_data and on segment_name
clauses. This command performs a serial scan of the table and builds
the index tree, but does not copy the data.

Do not specify any of the clauses that require data copying (fillfactor,
ignore_dup_row, and max_rows_per_page).

Re-create any nonclustered indexes.

10 Dump the database.

Adding devices to a segment
To add a device to a segment, follow these steps:

110

1

Use sp_helpsegment to check the amount of free space available on
the devices in the segment with.

If space on any deviceisextremely low, see* Problemswhen devices
for partitioned tables are full” on page 115.

You may need to copy the data out and back in again to get good data
distribution.

Initialize each device with disk init, and make it available to the
database with alter database.

CHAPTER 5 Controlling Physical Data Placement

Use sp_extendsegment segment_name, device_name to extend the
segment to each device. Drop the default and system segment from
each device.

Unpartition the table.
See “alter table...unpartition Syntax” on page 94.

Repartition the table, specifying the new number of devicesin the
segment.

See “alter table...partition syntax” on page 93.

If aclustered index exists, drop and re-create it. Do not use the
sorted_data option.

See “Distributing data evenly across partitions’” on page 95.
Dump the database.

Special procedures for difficult situations

These techniques are more complex than those presented earlier in the
chapter.

Clustered indexes on large tables

To create aclustered index on atable that will fill more than 40 to 45% of
the segment, and the input data fileis not in order by clustered index key,
these steps yield good data distribution, aslong as the data that you copy
in during step 6 contains a representative sample of the data.

1
2

Copy the data out.

Unpartition the table.

See “alter table...unpartition Syntax” on page 94.
Truncate the table.

Repartition the table.

See “alter table...partition syntax” on page 93.

111

Special procedures for difficult situations

5 Droptheclustered index and any nonclustered indexes. Depending on
how your index was created, use either drop index.

See “Using drop index and create clustered index” on page 96) or
alter table...drop constraint and “ Using constraints and alter table” on

page 96.

6 Useparallel bulk copy to copy in enough datato fill approximately
40% of the segment. This must be a representative sample of the
valuesin the key column(s) of the clustered index.

Copying in 40% of the datais much morelikely to yield good results
than smaller amounts of data, you can perform this portion of the bulk
copy can be performed in parallel; you must use nonparallel bep for
the second buld copy operation.

See “Using parallel bep to copy datainto partitions” on page 97.

7 Createthe clustered index on the segment, do not use the sorted_data
clause.

8 Usenonparallel bep, inasingle session, to copy intherest of the data.
The clustered index directs the rows to the correct partitions.

9 Use sp_helppartition to check the distribution of data pageson
partitions and sp_helpsegment to check the distribution of pageson
the segment.

10 Create any nonclustered indexes.
11 Dump the database.

One drawback of this method is that once the clustered index exists, the
second bulk copy operation can cause page splitting on the data pages,
taking slightly more room in the database. However, once the clustered
index exists, and all the datais |oaded, future maintenance activities can
use simpler and faster methods.

Alternative for clustered indexes
This set of steps may be useful when:
* Thetable data occupies more than 40 to 45% of the segment.

e Thetabledatais not in clustered key order, and you need to create a
clustered index.

112

CHAPTER 5 Controlling Physical Data Placement

¢ You do not get satisfactory resultstrying to load a representative
sample of the data, as explained in “ Clustered indexes on large
tables” on page 111.

This set of steps successfully distributes the datain almost all cases, but
requires careful attention:

1 Find the minimum value for the key column for the clustered index:
select min(order_id) fromorders
2 If the clustered index exists, drop it. Drop any nonclustered indexes.

See “Using drop index and create clustered index” on page 96 or
“Using constraints and alter table” on page 96.

3 Execute the command:
set sort_resources on

This command disables create index commands. Subsequent create
index commands print information about how the sort will be
performed, but do not create the index.

4 |ssue the command to create the clustered index, and record the
partition numbers and values in the output. This example shows the
values for atable on four partitions:

create clustered index order_cix
on orders(order_id)
The Create Index is done using Parallel Sort
Sort buffer size: 1500
Paral |l el degree: 25
Nurber of output devices: 3
Nurmber of producer threads: 4
Nurmber of consunmer threads: 4
The distribution map contains 3 elenment(s) for 4
partitions.
Partition Element: 1

450977
Partition Element: 2

903269
Partition Element: 3

1356032
Nurmber of sanpl ed records: 2449

113

Special procedures for difficult situations

114

10

11

12

These values, together with the minimum value from step 1, are the
key valuesthat the sort uses as diameterswhen assigning rowsto each
partition.

Bulk copy the data out, using character mode.
Unpartition the table.

See “alter table...unpartition Syntax” on page 94.
Truncate the table.

Repartition the table.

See “alter table...partition syntax” on page 93.

In the resulting output data file, locate the minimum key value and
each of the key values identified in step 4. Copy these values out to
another file, and delete them from the output file.

Copy into thetable, using parallel bulk copy to place them on the
correct segment. For the values shown above, the file might contain:

1 Jones
450977 Snmth
903269 Harris
1356032 W | der

The bep commands look like this:

bcp testdb..orders:1 in keyrows -F1 -L1
bcp testdb..orders:2 in keyrows -F2 -L2
bcp testdb..orders:3 in keyrows -F3 -L3
bcp testdb..orders:4 in keyrows -F4 -L4

At the end of this operation, you will have one row on the first page
of each partition — the same row that creating the index would have
allocated to that position.

Turn set sort_resources off, and create the clustered index on the
segment, using the with sorted_data option.

Do not include any clauses that force the index creation to copy the
datarows.

Use bulk copy to copy the datainto the table.

CHAPTER 5 Controlling Physical Data Placement

Use asingle, nonparalléel session. You cannot specify a partition for
bulk copy when the table has a clustered index, and running multiple
sessions runsthe risk of deadlocking.

The clustered index forces the pages to the correct partition.

13 Usesp_helpartition to check the balance of datapageson the partitions
and sp_helpsegment to balance of pages on the segments.

14 Create any nonclustered indexes.
15 Dump the database.

While this method can successfully make use of nearly all of the pagesin
apartition, it has some disadvantages:

¢ Theentire table must be copied by asingle, slow bulk copy

¢ Theclusteredindex islikely tolead to page splitting on the data pages
if the table uses allpages locking, so more space might be required.

Problems when devices for partitioned tables are full

Simply adding disks and re-creating indexes when partitions are full may
not solve load-balancing problems. If aphysical device that underlies a
partition becomes completely full, the data-copy stage of re-creating an
index cannot copy datato that physical device.

If aphysical device isamost completely full, re-creating the clustered
index does not always succeed in establishing a good load balance.

Adding disks when devices are full

Theresult of creating a clustered index when a physical deviceis
completely full isthat two partitions are created on one of the other
physical devices. Figure 5-2 and Figure 5-3 show one such situation.

Devices 2 and 3 are completely full, as shown in Figure 5-2.

115

Problems when devices for partitioned tables are full

Figure 5-2: A table with 3 partitions on 3 devices

devicel device2 device3

- Data
[] Empty

Adding two devices, repartitioning the table to use five partitions, and
dropping and re-creating the clustered index produces the following

results:

Device 1 One partition, approximately 40% full.

Devices2and 3 Empty. These devices had no free space when create index
started, so a partition for the copy of the index could not be
created on the device.

Devices4 and 5 Each device has two partitions, and each is 100% full.

Figure 5-3 shows these resullts.

Figure 5-3: Devices and partitions after create index

devicel device2 device3 device4 deviceb

[Data
[Empty

The only solution, once a device becomes completely full, isto bulk copy
the data out, truncate the table, and copy the data into the table again.

116

CHAPTER 5 Controlling Physical Data Placement

Adding disks when devices are nearly full

If adeviceisnearly full, re-creating a clustered index does not balance
data across devices. Instead, the device that is nearly full stores a small
portion of the partition, and the other space allocations for the partition
steals extents on other devices. Figure 5-4 shows atable with nearly full
data devices.

Figure 5-4: Partitions almost completely fill the devices

devicel device2 device3

m 1

After adding devices and re-creating the clustered index, the result might
be similar to the results shown in Figure 5-5.

- Data
L empy

Figure 5-5: Extent stealing and unbalanced data distribution

devicel device2 device3 device4 deviceb

- Data

|:| Empty
Stolen
pages

Once the partitions on device2 and device3 use the small amount of space
available, they start stealing extents from device4 and device5.

In this case, a second index re-creation step might lead to amore bal anced
distribution. However, if one of the devicesis nearly filled by extent
stealing, another index creation does not solve the problem.

Using bulk copy to copy the data out and back in again is the only sure
solution to this form of imbalance.

117

Maintenance issues and partitioned tables

To avoid situations such as these, monitor space usage on the devices, and
add space early.

Maintenance issues and partitioned tables

Partitioned table maintenance activity requirements depend on the
frequency and type of updates performed on the table.

Partitioned tables that require little maintenance include:

Tables that are read-only or that experience very few updates. In the
second case, only periodic checks for balance are required

Tables where inserts are well-distributed across the partitions.
Random insertsto partitioned heap tables and inserts that are evenly
distributed due to a clustered index key that places rows on different
partitions do not develop skewed distribution of pages.

If data modifications lead to space fragmentation and partially filled
data pages, you may need to re-create the clustered index.

Heap tables where inserts are performed by bulk copy. You can use
parallel bulk copy to direct the new data to specific partitions to
maintain load balancing.

Partitioned tables that require frequent monitoring and maintenance
include tables with clustered indexes that tend to direct new rowsto a
subset of the partitions. An ascending key index is likely to require more
frequent maintenance.

Regular maintenance checks for partitioned tables

Routine monitoring for partitioned tables should include the following
types of checks, in addition to routine database consistency checks:

118

Use sp_helpartition to check the balance on partitions.

If some partitions are significantly larger or smaller than the average,
re-create the clustered index to redistribute data.

Use sp_helpsegment to check the balance of space on underlying
disks.

CHAPTER 5 Controlling Physical Data Placement

If you re-create the clustered index to redistribute data for parallel
query performance, check for devices that are nearing 50% full.

Adding space before devices become too full avoids the complicated
procedures described earlier in this chapter.

Use sp_helpsegment to check the space available as free pages on
each device, or sp_helpdb for free kilobytes.

In addition, run update partition statistics, if partitioned tables undergo the
typesof activitiesdescribed in“ Updating partition statistics’ on page 103.

You might need to re-create the clustered index on partitioned tables
because:

Your index key tends to assign inserts to a subset of the partitions.

Delete activity tends to remove data from a subset of the partitions,
leading to 1/0O imbalance and partition-based scan imbalances.

The table has many inserts, updates, and deletes, leading to many
partialy filled data pages. This condition |eads to wasted space, both
on disk and in the cache, and increases |/O because more pages need
to read for many queries.

119

Maintenance issues and partitioned tables

120

CHAPTER 6

Basic design

Database Design

This covers some basic information on database design that database
administrators and designers would find useful as aresource. It also
coversthe Normal Forms for database normalization and
denormalization.

There are some major database design concepts and other tipsin moving
from the logical database design to the physical design for Adaptive
Server.

Topic Page
Basic design 121
Normalization 123
Denormalizing for performance 128

Database design is the process of moving from real-world business
models and requirements to a database model that meets these
requirements.

Normalization in arelational database, is an approach to structuring
information in order to avoid redundancy and inconsistency and to
promote efficient maintenance, storage, and updating. Several “rules’ or
levels of normalization are accepted, each a refinement of the preceding
one.

Of these, three forms are commonly used: first normal, second normal,
and third normal. First normal forms, the least structured, are groups of
records in which each field (column) contains unique and nonrepeating
information. Second and third normal forms break down first normal
forms, separating them into different tables by defining successively finer
interrel ationships between fields.

For relational databases such as Adaptive Server, the standard design
creates tablesin Third Normal Form.

121

Basic design

When you translate an Entity-Relationship model in Third Normal Form
(3NF) to arelational model:

Relations become tabl es.
Attributes become columns.

Rel ati onships become data references (primary and foreign key
references).

Physical database design for Adaptive Server

Based on access requirements and constraints, implement your physical
database design as follows:

Logical Page Sizes

122

Denormalize where appropriate

Partition tables where appropriate

Group tables into databases where appropriate
Determine use of segments

Determine use of devices

Implement referential integrity of constraints

In Adaptive Servers page size are variable. You have to exercise caution
when setting the page sizes.

There are hazardsin using larger devices on a 2Gb-limit platform. If you
attempt to configure alogical device larger than 2Gb where Adaptive
Server does not support large devices, you may experience the following
problems:;

Data corruption on databases (some releases give no error message).

Inability to dump or load data from the database

CHAPTER 6 Database Design

Normalization

When atableisnormalized, the non-key columns depend on the key used.

From arelational model point of view, it is standard to have tablesthat are
in Third Norma Form. Normalized physical design provides the greatest
ease of maintenance, and databasesin thisform are clearly understood by
developers.

However, afully normalized design may not always yield the best
performance. Sybase recommends that you design databases for Third
Normal Form, however, if performance issues arise, you may have to
denormalize to solve them.

Levels of normalization

Each level of normalization relies on the previous level. For example, to
conform toSecond Normal Form, entities must bein first Normal Form.

You may havetolook closely at the tableswithin adatabaseto verify if the
database is normalized. You may have to change the way the
normalization was done by going through adenormalization on given data
before you can apply a different setup for normalization.

Use the following information to verify whether or not a database was
normalized, and then use it to set up the Normal Forms you may want to
use.

Benefits of normalization

Normalization produces smaller tables with smaller rows:
e Morerows per page (lesslogical 1/0)

¢ Morerows per I/0O (more efficient)

¢ Morerowsfitin cache (less physical 1/0)

The benefits of normalization include:

e Searching, sorting, and creating indexes is faster, since tables are
narrower, and more rows fit on a data page.

¢ You usually have more tables.

123

Normalization

You can have more clustered indexes (one per table), so you get more
flexibility in tuning queries.

« Index searching is often faster, since indexes tend to be narrower and
shorter.

e Moretablesallow better use of segments to control physical
placement of data.

e You usualy have fewer indexes per table, so data modification
commands are faster.

e Fewer null values and less redundant data, making your database
more compact.

e Triggers execute more quickly if you are not maintaining redundant
data

« Datamodification anomalies are reduced.

* Normalization is conceptually cleaner and easier to maintain and
change as your needs change.

While fully normalized databases require more joins, joins are generally
very fast if indexes are available on the join columns.

Adaptive Server is optimized to keep higher levels of the index in cache,
so each join performs only one or two physical 1/0s for each matching
row.

The cost of finding rows already in the data cache is extremely low.

First Normal Form
The rulesfor First Normal Form are:

e Every column must be atomic. It cannot be decomposed into two or
more subcolumns.

e You cannot have multivalued columns or repeating groups.
« Each row and column position can have only one value.

Thetable in Figure 6-1 violates First Normal Form, since the dept_no
column contains a repeating group:

124

CHAPTER 6 Database Design

Figure 6-1: A table that violates first Normal Form

Employee (emp_num, emp_Iname, dept__no)

Employee
emp_num emp_lname dept Z Repeating
10052 Jones A10 C66

10101 Sims D60

Normalization creates two tables and moves dept_no to the second table:

Figure 6-2: Correcting First Normal Form violations by creating two

tables
Employee (emp_num, emp_Iname) Emp_dept (emp_num, dept_no)
Employee Emp_dept
emp_num emp_Iname emp_num dept_no
10052 Jones 10052 Al0
10101 Sims 10052 C66
10101 D60

Second Normal Form

For atableto bein Second Normal Form, every non-key field must depend
on the entire primary key, not on part of a composite primary key. If a
database has only single-field primary keys, it isautomatically in Second
Normal Form.

In Figure 6-3, the primary key is a composite key on emp_num and
dept_no. But the value of dept_name depends only on dept_no, not on the
entire primary key.

125

Normalization

Figure 6-3: A table that violates Second Normal Form

Emp_dept (emp_num, dept_no, dept_name)

Depends on
art of primar
Emp_dept lf PemoTRITEY

emp_num dept_no dept_nm
10052 Al10 accounting
10074 Al10 accounting
10074 D60 development
v—v\/
Primary key

To normalize this table, move dept_name to a second table, as shownin
Figure 6-4.

Figure 6-4: Correcting Second Normal Form violations by creating
two tables

Emp_dept (emp_num, dept_no) Dept (dept_no, dept_name)

Emp_dept Dept
emp_num dept_no dept_no dept_name
10052 Al10 Al0 accounting
10074 Al10 D60 development
\10074 D60 Y Primary
Primary

Third Normal Form

For atableto bein Third Normal Form, a non-key field cannot depend on
another non-key field.

Thetable in Figure 6-5 violates Third Normal Form because the

mgr_Iname field depends on the mgr_emp_num field, which is not akey
field.

126

CHAPTER 6 Database Design

Figure 6-5: A table that violates Third Normal Form
Dept (dept_no, dept_name, mgr_emp_num, mgr_Iname)

Dept
dept_no dept_name mgr_emp_num mgr_Iname
Al0 accounting 10073 Johnson
D60 development | 10089 White
M80 marketing 10035 Dumont
Primary ke u
Depends on
Depend on non-key
primary key

The solutionisto split the Dept tableinto two tables, as shown in Figure 6-
6. In this case, the Employees table, already stores thisinformation, so
removing the mgr_Iname field from Dept brings the table into Third
Normal Form.

127

Denormalizing for performance

Figure 6-6: Correcting Third Normal Form violations by creating
two tables

Dept (dept_no, dept_name, mgr_emp_num)

Dept
dept_no dept_name mgr_emp_num
Al10 accounting 10073
D60 development | 10089
M80 marketing 10035
-/ Employee (emp_num, emp_Iname)
Primary
Employee
emp_num emp_lname
10073 Johnson
10089 White
10035 Dumont
N/
Primary

Denormalizing for performance

Once you have normalized your database, you can run benchmark teststo
verify performance. You may have to denormalize for specific queries
and/or applications.

Denormalizing:

* Can be done with tables or columns

e Assumes prior normalization

* Requires athorough knowledge of how the datais being used
You may want to denormalize if:

e All or nearly all of the most frequent queries require accessto the full
set of joined data.

128

CHAPTER 6 Database Design

Risks

A majority of applications perform table scans when joining tables.

e Computational complexity of derived columns requires temporary
tables or excessively complex queries.

To denormalize you should have athorough knowledge of the application.
Additionally, you should denormalize only if performance issues indicate
that it is needed.

For example, the ytd_sales column in the titles table of the pubs2 database
isadenormalized column that is maintained by atrigger on the salesdetail
table. You can obtain the same values using this query:

select title_id, sum(qty)
from sal esdet ai |
group by title_id

Obtaining the summary values and the document title requires ajoin with
the titles table:

select title, sun(qty)
fromtitles t, salesdetail sd
where t.title_id = sd.title_id
group by title

If you run this query frequently, it makes sense to denormalize this table.
But thereisa price to pay: you must create an insert/update/del ete trigger
on the salesdetail table to maintain the aggregate values in the titles table.

Executing the trigger and performing the changesto titles adds processing
cost to each data modification of the gty column value in salesdetail.

This situation is a good example of the tension between decision support
applications, which frequently need summaries of large amounts of data,
and transaction processing applications, which perform discrete data
modifications.

Denormalization usually favors one form of processing at a cost to others.

Any form of denormalization hasthe potential for dataintegrity problems
that you must document carefully and address in application design.

129

Denormalizing for performance

Disadvantages
Denormalization has these disadvantages:

e ltusually speedsretrieval but can slow data modification.

* Itisaways application-specific and must be reevaluated if the
application changes.

¢ It canincreasethe size of tables.

* Insomeinstances, it smplifies coding; in others, it makes coding
more complex.

Performance advantages
Denormalization can improve performance by:

e Minimizing the need for joins
* Reducing the number of foreign keys on tables

« Reducing the number of indexes, saving storage space, and reducing
data modification time

* Precomputing aggregate values, that is, computing them at data
modification time rather than at select time

* Reducing the number of tables (in some cases)

Denormalization input

When deciding whether to denormalize, you need to analyze the data
access regquirements of the applicationsin your environment and their
actual performance characteristics.

Often, good indexing and other solutions solve many performance
problems rather than denormalizing.

Some of the issuesto examine when considering denormalization include:

e What arethe critical transactions, and what is the expected response
time?

* How often are the transactions executed?

e What tables or columns do the critical transactions use? How many
rows do they access each time?

130

CHAPTER 6 Database Design

« Whatisthemix of transaction types: select, insert, update, and del ete?
e What istheusua sort order?

¢ What are the concurrency expectations?

¢ How big are the most frequently accessed tables?

» Do any processes compute summaries?

¢ Whereisthe data physically located?

Techniques
The most prevalent denormalization techniques are:
* Adding redundant columns
* Adding derived columns
» Callapsing tables

In addition, you can duplicate or split tables to improve performance.
While these are not denormalization techniques, they achieve the same
purposes and require the same safeguards.

Adding redundant columns
You can add redundant columns to eliminate frequent joins.

For example, if you are performing frequent joins on the titleauthor and
authors tablesto retrieve the author’slast name, you can add the au_Iname
column to titleauthor.

Adding redundant columns eliminates joins for many queries. The
problems with this solution are that it:

¢ Requires maintenance of new columns. you must make changes to
two tables, and possibly to many rows in one of the tables.

¢ Requires more disk space, since au_Iname is duplicated.

131

Denormalizing for performance

Adding derived columns

Collapsing tables

132

Adding derived columns can eliminate some joins and reduce the time

needed to produce aggregate values. The total_sales column in the titles
table of the pubs2 database provides one example of a derived column

used to reduce aggregate value processing time.

The examplein Figure 6-7 shows both benefits. Frequent joins are needed
between the titleauthor and titles tables to provide the total advance for a
particular book title.

Figure 6-7: Denormalizing by adding derived columns

select title, sum(advance)

from titleauthor ta, titles t

where ta.title_id = t.title_id
group by title_id

titleauthor titles
fifle id [advance fitle_id | fitle

A joincolumns A

select title, sum_adv from titles

titles titleauthor
title 1d T fifle sum adv fitle id [advance

You can create and maintain a derived data column in the titles table,
eliminating both the join and the aggregate at runtime. This increases
storage needs, and requires maintenance of the derived column whenever
changes are made to the titles table.

If most users need to see the full set of joined data from two tables,
collapsing thetwo tablesinto one canimprove performance by eliminating
thejoin.

CHAPTER 6 Database Design

Duplicating tables

Splitting tables

For example, users frequently need to see the author name, author ID, and
the blurbs copy data at the same time. The solution is to collapse the two
tablesinto one. The data from the two tables must be in a one-to-one
relationship to collapse tables.

Collapsing the tables eliminates the join, but loses the conceptual
separation of the data. If some users still need access to just the pairs of
data from the two tables, this access can be restored by using queries that
select only the needed columns or by using views.

If agroup of usersregularly needs only a subset of data, you can duplicate
the critical table subset for that group.

Figure 6-8: Denormalizing by duplicating tables

newauthors
/lau_id |au_lname| copy |,
/ \
/
\
/ \
/ N -
/ -7 \
— ~
—_— ~ \
newauthors blurbs
au_id [au_Iname[copy au_id | copy

Thekind of split shown in Figure 6-8 minimizes contention, but requires
that you manage redundancy. There may beissues of latency for the group
of users who see only the copied data.

Sometimes splitting normalized tables can improve performance. You can
split tablesin two ways:

133

Denormalizing for performance

Horizontal splitting

134

e Horizontally, by placing rows in two separate tables, depending on
data values in one or more columns

e Verticaly, by placing the primary key and some columnsin onetable,
and placing other columns and the primary key in another table

Keep in mind that splitting tables, either horizontally or vertically, adds
complexity to your applications.

Use horizontal splitting if:

* Atableislarge, and reducing its size reduces the number of index
pagesread in a query.

B-tree indexes, however, are generally very flat, and you can add
large numbers of rows to atable with small index keys before the
B-tree requires more levels.

An excessive number of index levels may be an issue with tablesthat
have very large keys.

» Thetablesplit correspondsto anatural separation of the rows, such as
different geographical sites or historical versus current data.

You might choose horizontal splitting if you have atable that stores
huge amounts of rarely used historical data, and your applications
have high performance needs for current datain the same table.

« Table splitting distributes data over the physical media, however,
there are other ways to accomplish this goal.

Generally, horizontal splitting requires different table namesin queries,
depending on values in the tables. In most database applications this
complexity usually far outweighs the advantages of table splitting .

Aslong asthe index keys are short and indexes are used for queries on the
table, doubling or tripling the number of rowsinthetable may increasethe
number of disk readsrequired for aquery by only oneindex level. If many
queries perform table scans, horizontal splitting may improve
performance enough to be worth the extra maintenance effort.

Figure 6-9 shows how you might split the authors table to separate active
and inactive authors:

CHAPTER 6 Database Design

Vertical splitting

Figure 6-9: Horizontal partitioning of active and inactive data

Authors

Problem: Usually only active
active records are accessed active
inactive
active
inactive
inactive

Solution: Partition horizontally into active and inactive data

Inactive_Authors Active_Authors

Use vertical splitting if:
¢ Some columns are accessed more frequently than other columns.

¢ Thetable haswiderows, and splitting the table reduces the number of
pages that need to be read.

Vertical table splitting makes even more sense when both of the above
conditions are true. When atable contains very long columns that are
accessed infrequently, placing them in a separate table can greatly speed
theretrieval of the morefrequently used columns. With shorter rows, more
data rows fit on a data page, so for many queries, fewer pages can be
accessed.

Managing denormalized data

Whatever denormalization techniques you use, you need to ensure data
integrity by using:

e Triggers, which can update derived or duplicated data anytime the
base data changes

135

Denormalizing for performance

Using triggers

e Application logic, using transactions in each application that update
denormalized data, to ensure that changes are atomic

e Batch reconciliation, run at appropriate intervals, to bring the
denormalized data back into agreement

From an integrity point of view, triggers provide the best solution,
although they can be costly in terms of performance.

In Figure 6-10, the sum_adv column in thetitles table stores denormalized
data. A trigger updates the sum_adv column whenever the advance
column in titleauthor changes.

Figure 6-10: Using triggers to maintain normalized data

titleauthor titles
title_id [au_id dadvance title_id [sum_adv

~_

Using application logic

136

If your application has to ensure data integrity, it must ensure that the
inserts, deletes, or updates to both tables occur in asingle transaction.

If you use application logic, be very sure that the data integrity
requirements are well documented and well known to all application
developers and to those who must maintain applications.

Note Using application logic to manage denormalized dataisrisky. The
samelogic must be used and maintained in all applicationsthat modify the
data

CHAPTER 6 Database Design

Batch reconciliation

If 100 percent consistency isnot required at all times, you can run abatch
job or stored procedure during off-hours to reconcile duplicate or derived
data

137

Denormalizing for performance

138

CHAPTER 7

Performance gains through query optimization

Data Storage

This chapter explains how Adaptive Server stores datarows on pagesand
how those pages are used in select and data modification statements, when

there are no indexes.

It laysthefoundation for understanding how to improve Adaptive Server’'s
performance by creating indexes, tuning your queries, and addressing

object storage issues.

Topic Page
Performance gains through query optimization 139
Adaptive Server pages 141
Pages that manage space allocation 145
Space overheads 148
Heaps of data: tables without clustered indexes 155
How Adaptive Server performs /O for heap operations 161
Caches and object bindings 162
Asynchronous prefetch and 1/0 on heap tables 167
Heaps: pros and cons 168
Maintaining heaps 168
Transaction log: a special heap table 170

The Adaptive Server optimizer attempts to find the most efficient access
path to your data for each table in the query, by estimating the cost of the
physical 1/O needed to access the data, and the number of times each page

needs to be read while in the data cache.

In most database applications, there are many tables in the database, and
each table has one or more indexes. Depending on whether you have

created indexes, and what kind of indexes you have created, the

optimizer’s access method options include:

139

Performance gains through query optimization

« Atablescan—reading al the table’s data pages, sometimes hundreds
or thousands of pages.

e Index access — using the index to find only the data pages needed,
sometimes as few as three or four page readsin all.

e Index covering — using only a non clustered index to return data,
without reading the actual data rows, requiring only afraction of the
page reads required for atable scan.

Having the proper set of indexes on your tables should allow most of your
gueries to access the data they need with a minimum number of page
reads.

Query processing and page reads

140

Most of aquery’s execution time is spent reading data pages from disk.
Therefore, most of your performance improvement — more than 80%,
according to many performance and tuning experts — comes from
reducing the number of disk reads needed for each query.

When a query performs atable scan, Adaptive Server reads every pagein
thetable because no useful indexesare availableto helpit retrieve the data.
Theindividual query may have poor response time, because disk reads
taketime. Queriesthat incur costly table scans al so affect the performance
of other queries on your server.

Table scans can increase the time other users have to wait for aresponse,
since they consume system resources such as CPU time, disk I/O, and
network capacity.

Table scans use alarge number of disk reads (1/0s) for a given query.
When you have become familiar with the access methods, tuning tools, the
size and structure of your tables, and the queriesin your applications, you
should be able to estimate the number of 1/O operations agiven join or
select operation will perform, given the indexes that are available.

If you know what the indexed columns on your tables are, along with the
table and index sizes, you can often look at a query and predict its
behavior. For different queries on the same table, you might be able to
draw these conclusions:

e Thispoint query returnsasingle row or a small number of rows that
match the where clause condition.

CHAPTER 7 Data Storage

Theconditionin thewhere clauseisindexed; it should perform two to
four 1/0Os on the index and one more to read the correct data page.

e All columnsin the select list and where clause for this query are
included in anon clustered index. This query will probably perform a
scan on the leaf level of the index, about 600 pages.

Adding an unindexed column to the select list, would force the query
to scan the table, which would require 5000 disk reads.

¢ Nouseful indexesare available for thisquery; itisgoing to do atable
scan, requiring at least 5000 disk reads.

This chapter describes how tables are stored, and how access to datarows
takes place when indexes are not being used.

Chapter 9, “How Indexes Work,” describes access methods for indexes.
Other chapters explain how to determine which access method is being
used for aquery, the size of the tables and indexes, and the amount of 1/0O
aquery performs. These chapters provide a basis for understanding how
the optimizer models the cost of accessing the data for your queries.

Adaptive Server pages

The basic unit of storage for Adaptive Server is a page. Page sizes can be
2K, 4K, 8K to 16K. The server’s page size is established when you first
build the source. Oncethe server isbuild the this val ue cannot be changed.
These types of pages store database objects:

» Datapages— store the data rows for atable.
* Index pages— store the index rows for al levels of an index.

» Largeobject (LOB) pages—storethedatafor text and image columns,
and for Java off-row columns.

Adaptive Server may have to handle large volumes of datafor asingle
query, DML operation, or command. For example, if you use a data-only-
locked (DOL) table with a char(2000) column, Adaptive Server must
allocate memory to perform column copying while scanning the table.
Increased memory requests during the life of a query or command means
apotential reduction in throughput.

141

Adaptive Server pages

The size of Adaptive Server‘slogical pages (2K, 4K, 8K, or 16K)
determines the server’s space allocation. Each all ocation page, object
allocation map (OAM) page, data page, index page, text page, and so on
are built on alogical page. For example, if the logical page size of
Adaptive Server is 8K, each of these pagetypesare 8K insize. All of these
pages consume the entire size specified by the size of the logical page.
OAM pageshaveagreater number of OAM entriesfor larger logical pages
(for example, 8K) than for smaller pages (2K).

Page headers and page sizes

All pages have a header that stores information such as the object ID that
the page belongs to and other information used to manage space on the
page. Table 7-1 shows the number of bytes of overhead and usable space
on data and index pages.

Table 7-1: Overhead and user data space on data and index pages

Locking Scheme Overhead Bytes for User Data
Allpages 32 2016
Data-only 46 2002

Therest of the page is available to store data and index rows.

For information on how text, image, and Java columns are stored, see
“Large Object (LOB) Pages’ on page 143.

Varying logical page sizes

142

The dataserver command allows you to create master devices and
databases with logical pages of size 2K, 4K, 8K, or 16K. Larger logical
pages alow you to create larger rows, which can improve your
performance because Adaptive Server accesses more data each time it
reads a page. For example, a16K page can hold 8 timesthe amount of data
asa2K page, an 8K page holds 4 times asmuch dataas a 2K page, and so
on, for all the sizesfor logical pages.

Thelogical page size is a server-wide setting; you cannot have databases
with varying size logical pages within the same server. All tables are
appropriately sized so that the row sizeisno greater than the current page
size of the server. That is, rows cannot span multiple pages.

CHAPTER 7 Data Storage

Seethe Utilities Guide for specific information about using the dataserver
command to build your master device.

Data and index pages

Data pages and index pages on data-only-locked tables have a row offset
tablethat storespointersto the starting byte for each row on the page. Each
pointer takes 2 bytes.

Data and index rows are inserted on a page starting just after the page
header, and fill in contiguously down the page. For all tables and indexes
on data-only-locked tables, the row offset table begins at the last byte on
the page, and grows upward.

Theinformation stored for each row consists of the actual column data
plus information such as the row number and the number of variable-
length and null columnsin the row. Index pages for allpages-locked tables
do not have arow offset table.

Rows cannot cross page boundaries, except for text, image, and Java off-
row columns. Each datarow has at least 4 bytes of overhead; rows that
contain variable-length data have additional overhead.

See Chapter 15, “Determining Sizes of Tables and Indexes,” for more
information on data and index row sizes and overhead.

The row offset table stores pointers to the starting location for each data
row on the page.

Large Object (LOB) Pages

text, image, and Java off-row columns (LOB columns) for atable are
stored as a separate data structure, consisting of a set of pages. Each table
with atext or image column has one of these structures. If atable has
multiple LOB columns, it still has only one of these separate data
structures.

Thetableitself storesa16-byte pointer to thefirst page of the valuefor the
row. Additional pages for the value are linked by next and previous
pointers. Each value is stored in its own, separate page chain. The first
page stores the number of bytesin thetext value. Thelast pageinthechain
for avalueis terminated with a null next-page pointer.

143

Adaptive Server pages

Extents

144

Reading or writing aL OB value requires at least two page reads or writes:
e Onefor the pointer
e Onefor the actual location of the text in the text object

Each LOB page stores up to 1800 bytes. Every non-null value uses at | east
one full page.

LOB structures are listed separately in sysindexes. The ID for the LOB
structure isthe same asthe table’s ID. The index ID column, indid, is
always 255, and the name is the table name, prefixed with the letter “t”.

Adaptive Server pages are always allocated to atable, index, or LOB
structure. A block of 8 pagesis called an extent. The size of an extent
depends on the page size the server uses. The extent sizeon a 2K server is
16K where on an 8K it is 64K, etc. The smallest amount of space that a
table or index can occupy is 1 extent, or 8 pages. Extents are deallocated
only when all the pagesin an extent are empty.

The use of extentsin Adaptive Server is transparent to the user except
when examining reports on space usage.

For example, reports from sp_spaceused display the space allocated (the
reserved column) and the space used by data and indexes. The unused
column displays the amount of space in extents that are allocated to an
object, but not yet used to store data.

sp_spaceused titles
nane rowotal reserved data i ndex_si ze unused

titles 5000 1392 KB 1250 KB 94 KB 48 KB

In this report, the titles table and its indexes have 1392K reserved on
various extents, including 48K (24 data pages) unallocated in those
extents.

CHAPTER 7 Data Storage

Pages that manage space allocation

In addition to data, index, and L OB pages used for data storage, Adaptive
Server uses other types of pagesto manage storage, track space allocation,
and locate database objects. The sysindexes table also stores pointers that
are used during data access.

The pages that manage space allocation and the sysindexes pointers are
used to:

» Speed the process of finding objectsin the database
» Speed the process of allocating and deallocating space for objects.

» Provide ameansfor Adaptive Server to alocate additional space for
an object that is near the space already used by the object. This helps
performance by reducing disk-head travel.

The following types of pagestrack the disk space use by database objects:

» Global allocation map (GAM) pages contain all ocation bitmapsfor an
entire database.

» Allocation pagestrack space usage and objects within groups of 256
pages, or 1/2MB.

» Object alocation map (OAM) pages contain information about the
extents used for an object. Each table and index has at |east one OAM
page that tracks where pages for the object are stored in the database.

» Control pages manage space allocation for partitioned tables. Each
partition has one control page.

Global allocation map pages

Each database has a Global Allocation Map Pages (GAM). It storesa
bitmap for all allocation units of a database, with 1 bit per allocation unit.
When an allocation unit has no free extents available to store objects, its
corresponding bit in the GAM is set to 1.

This mechanism expedites all ocating new space for objects. Users cannot
view the GAM page; it appears in the system catalogs as the sysgams
table.

145

Pages that manage space allocation

Allocation pages

When you create adatabase or add space to adatabase, the spaceisdivided
into allocation units of 256 data pages. The first page in each allocation
unit isthe alocation page. Page 0 and all pages that are multiples of 256
are alocation pages.

The allocation page tracks space in each extent on the allocation unit by
recording the object ID and index ID for the object that is stored on the
extent, and the number of used and free pages. The allocation page also
stores the page ID for the table or index’s OAM page.

Object allocation map pages

Each table, index, and text chain has one or more Object Allocation Map
(OAM) pages stored on pages allocated to the table or index. If atable has
more than one OAM page, the pages are linked in achain. OAM pages
store pointers to the allocation units that contain pages for the object.

Thefirst page in the chain stores allocation hints, indicating which OAM
page in the chain has information about allocation units with free space.

This provides afast way to allocate additional space for an object and to
keep the new space close to pages already used by the object.

How OAM pages and allocation pages manage object storage

146

Figure 7-1 shows how allocation units, extents, and objects are managed
by OAM pages and allocation pages.

« Two allocation units are shown, one starting at page 0 and one at page
256. Thefirst page of each is the allocation page.

« Atableisstored onfour extents, starting at pages 1 and 24 on thefirst
allocation unit and pages 272 and 504 on the second unit.

* Thefirst page of the tableis the table’s OAM page. It pointsto the
allocation page for each allocation unit where the object uses pages,
so it points to pages 0 and 256.

» Allocation pages0 and 256 storethetable'sobject ID and information
about the extents and pages used on the extent. So, allocation page 0
points to page 1 and 24 for the table, and allocation page 256 points
to pages 272 and 504.

CHAPTER 7 Data Storage

Figure 7-1: OAM page and allocation page pointers

OAM

Page

2

3

4

5

6

7

0

2% ABE

819

10

11

12

13

14

15

256

16 | 17

18

19

20

21

22

23

24| 25

26

27

28

29

30

31

248|249

250

251

252

253

254

255

256|257

258

259

260

261

262

263

264|265

266

267

268

269

270

271

272|273

274

275

276

277

278

279

280|281

282

283

284

285

286

287

504|505

506

507

508

509

510

511

Page allocation keeps an object’s pages together

Adaptive Server tries to keep the page all ocations close together for
objects. In most cases:

Pages used by
Allocation

Other

e |If thereisan unallocated page in the current extent, that pageis
assigned to the object.

e Ifthereisnofreepageinthe current extent, but thereisan unallocated
page on ancther of the object’s extents, that extent is used.

« [If dl the object’s extents are full, but there are free extents on the
allocation unit, the new extent is allocated in a unit already used by

the object.

sysindexes table and data access

The sysindexes table stores information about indexed and unindexed
tables. sysindexes has one row for each:

147

Space overheads

« Allpages-locked table, theindid columnisQif the table does not have
aclustered index, and 1 if the table does have a clustered index.

« Data-only-locked tables, the indid is always O for the table.

* Nonclustered index, and for each clustered index on a data-only-
locked table, index | Ds are between 2 and 250.

e Tablewith one or more LOB columns, theindex ID isaways 255 for

the LOB structure.

Each row in sysindexes stores pointersto atable or index to speed access
to objects. Table 7-2 shows how these pointers are used during data access.

Table 7-2: Use of sysindexes pointers in data access

Column Use for table access Use for index access

root If indid is 0 and the tableisapartitioned Used to find the root page of the index
alpages-locked table, root pointstothe tree.
last page of the heap.

first Pointsto thefirst datapageinthepage Pointsto the first leaf-level pagein a
chain for allpages-locked tables. non clustered index or aclustered index

on adata-only-locked table.

doampg Points to the first OAM page for the
table.

ioampg Points to the first OAM page for an

index.

Space overheads

Regardless of the logical page size it is configured for, Adaptive Server
allocates space for objects (tables, indexes, text page chains) in extents,
each of which iseight logical pages. That is, if aserver is configured for
2K logical pages, it allocates one extent, 16K, for each of these objects; if
aserver isconfigured for 16K logical pages, it allocates one extent, 128K,

148

for each of these objects.

Thisisalso true for system tables. If your server has many small tables,
space consumption can be quite large if the server uses larger logical

pages.

CHAPTER 7 Data Storage

Number of columns

For example, for aserver configured for 2K logical pages, systypes—with
approximately 31 short rows, a clustered and a non-clustered index —

reserves 3 extents, or 48K of memory. If you migrate the server to use 8K
pages, the space reserved for systypesisstill 3 extents, 192K of memory.

For aserver configured for 16K, systypesrequires 384K of disk space. For
small tables, the space unused in the last extent can become significant on
servers using larger logical page sizes.

Databases are also affected by larger page sizes. Each database includes
the system catal ogs and their indexes. If you migrate from asmaller to
larger logical page size, you must account for the amount of disk space
each database requires.

and size
The maximum number of columns you can createin atableis:

» 1024 for fixed-length columnsin both all-pages-locked (APL) and
data-only- locked (DOL) tables

o 254 for variable-length columnsin an APL table

» 1024 for variable-length columnsin an DOL table

The maximum size of a column depends on:

* Whether the table includes any variable- or fixed-length columns.

» Thelogical pagesize of the database. For example, in adatabase with
2K logical pages, the maximum size of acolumninan APL table can
be aslarge as a single row, about 1962 bytes, less the row format
overheads. Similarly, for a4K page, the maximum size of acolumnin
aAPL table can be as large as 4010 bytes, less the row format
overheads. See Table 0-1 for more information.

» If you attempt to create a table with a fixed-length column that is
greater than the limits of the logical page size, create table issues an

error message.

149

Space overheads

Table 7-3: Maximum row and column length - APL & DOL

Maximum row Maximum column

Locking scheme | Page size length length

2K (2048 bytes) 1962 1960 bytes

4K (4096 bytes) 4010 4008 bytes
APL tables 8K (8192 bytes) 8106 8104 bytes

16K (16384 bytes) 16298 16296 bytes

2K (2048 bytes) 1964 1958 bytes

4K (4096 bytes) 4012 4006 bytes
DOL tables 8K (8192 bytes) 8108 8102 bytes

16K (16384 bytes) 16300 16294 bytes

if table does not

include any variable
length columns

16K (16384 bytes) 16300 8191-6-2 = 8183 bytes
(subject toamax start if table includes at
offset of varlen = least on variable
8191) length column.*

* Thissizeincludes six bytesfor the row overhead and two bytesfor
the row length field

The maximum size of afixed-length columninaDOL table with a 16K
logical page size depends on whether the table contains variable-length
columns. The maximum possible starting offset of a variable-length
column is 8191. If the table has any variable-length columns, the sum of
the fixed-length portion of the row, plus overheads, cannot exceed 8191
bytes, and the maximum possible size of al the fixed-length columnsis
restricted to 8183 bytes, when the table contains any variable-length
columns.

Variable-length columns in APL tables

APL tablesthat contain one variable-length column (for example, varchar,
varbinary and so on) have the following minimum overhead for each row:

e Two bytesfor theinitial row overhead.
* Two bytesfor the row length.

* Two bytesfor the column-offset table at the end of the row. Thisis
aways n+1 bytes, where n is the number of variable-length columns
in the row.

150

CHAPTER 7 Data Storage

Variable-length columns that

A single-column table has an overhead of at |east six bytes, plus additional
overhead for the adjust table. The maximum column size, after all the
overhead is taken into consideration, is less than or equal to the column
length + number of bytes for adjust table + six-byte overhead.

Table 7-4: Maximum size for variable-length columns in an APL
table

Maximum row Maximum column
Page size length length
2K (2048 bytes) 1962 1948
4K (4096 bytes) 4010 3988
8K (8192 bytes) 8096 8058
16K (16384 bytes) 16298 16228

exceed the logical page size

If your table uses 2K logical pages, you can create some variable-length
columns whose total row-length exceeds the maximum row-length for a
2K page size. Thisallows you to create tables where some, but not all,
variable-length columns contain the maximum possible size. However,
when you issue create table, you receive a warning message that says the
resulting row size may exceed the maximum possible row size, and cause
afuture insert or update to fail.

For example, if you create atable that usesa 2K page size, and containsa
variable-length column with alength of 1975 bytes, Adaptive Server
creates the table but issues awarning message. However, an insert fails if
you attempt to insert data that exceeds the maximum length of the row
(1962 bytes).

Variable length columns in DOL tables

For asingle, variable-length column in a DOL table, the minimum
overhead for each row is:

e Six bytesfor theinitial row overhead.
* Two bytesfor the row length.

¢ Two bytesfor the column offset table at the end of the row. Each
column offset entry istwo bytes. There are n such entries, wherenis
the number of variable-length columnsin the row.

Thetotal overhead is 10 bytes. Thereisno adjust tablefor DOL rows. The
actual variable-length column sizeis:

151

Space overheads

colum Il ength + 10 bytes overhead

Table 7-5: Maximum size for variable-length columns in an DOL
table

Maximum row Maximum column
Page size length length
2K (2048 bytes) 1964 1954
4K (4096 bytes) 4012 4002
8K (8192 bytes) 8108 7998
16K (16384 bytes) 16300 162290

DOL tables with variable-length columns must have an offset of lessthan
8191 bytesfor all insertsto succeed. For example, thisinsert fails because
the offset totals more than 8191 bytes:

create table t1(
cl int not null,
c2 varchar (5000) not null
c¢3 varchar (4000) not null
c4 varchar (10) not null
more fixed | ength col ums)
cvarl en varchar(nnn)) | ock datarows

The offset for columns ¢2, ¢3, and ¢4 is 9010, so the entire insert fails.

Restrictions for converting locking schemes or using select into

152

The following restrictions apply whether you are using alter table to
change alocking scheme or using select into to copy datainto anew table.

For serversthat use page sizes other than 16K pages, the maximum length
of avariable length columnin an APL tableislessthan that for a DOL
table, so you can convert the locking scheme of an APL table with a
maximum sized variable length column to DOL. Conversion of aDOL
table containing at least one maximum sized variable length column to
allpages modeis restricted. Adaptive Server raises an error message and
the operation is aborted.

On serversthat use 16K pages, APL tables can store substantially larger
sized variable length columns than can be stored in DOL tables.You can
convert tables from DOL to APL, but lock scheme conversion from APL
to DOL isrestricted. Adaptive Server raises an error message and the
operation is aborted.

CHAPTER 7 Data Storage

Note that these restrictions on lock scheme conversions occur only if there
is datain the source tabl e that goes beyond the limits of the target table. If
this occurs, Adaptive Server raises an error message while transforming
the row format from one locking schemeto the other. If thetableis empty,
no such data transformation is required, and the lock change operation
succeeds. But, then, on a subsequent insert or update of the table, users
might run into errors due to limitations on the column or row-size for the
target schema of the altered table.

Organizing columns in DOL tables by size of variable-length columns

For DOL tablesthat use variable-length columns, arrange the columns so
the longest columns are placed toward the end of the table definition. This
allowsyou to create tableswith much larger rowsthan if thelarge columns
appear at the beginning of the table definition. For instance, in a16K page
server, the following table definition is acceptable:

create table t1 (
cl int not null,
c2 varchar (1000) nul I,
c¢3 varchar (4000) nul I,
c4 varchar (9000) null) |ock datarows

However, the following table definition typically is unacceptable for
future inserts. The potential start offset for column c2 is greater than the
8192-byte limit because of the proceeding 9000-byte c4 column:

create table t2 (
cl int not null,
c4 varchar (9000) nul I,
c¢3 varchar (4000) nul I,
c2 varchar (1000) null) |ock datarows

Thetableis created, but future inserts may fail.

Number of rows per data page
The number of rows allowed for aDOL data page is determined by:
* Thepagesize.

153

Space overheads

Maximum numbers

e A 10— byte overhead for the row ID, which specifies arow-
forwarding address.

Table 7-6 displaysthe maximum number of datarowsthat canfitonaDOL
data page:

Table 7-6: Maximum number of data rows for a DOL data page

Page Size Maximum number of rows

2K 166
4K 337
8K 678
16K 1361

APL data pages can have a maximum of 256 rows. Because each page
requires a one-byte row number specifier, large pages with short rows
incur some unused space.

For example, if Adaptive Server is configured with 8K logical pages and
rowsthat are 25 byteslong, the pagewill have 1275 bytes of unused space,
after accounting for the row-offset table, and the page header.

Arguments for stored procedures

The maximum number of argumentsfor stored proceduresis2048. Seethe
Transact - SQL User’s Guide for more information.

Retrieving data with enhanced limits

154

Adaptive Server version 12.5 and later can store data that has different
limits than data stored in previous versions. Clients also must be able to
handle the new limits the data can use. If you are using older versions of
Open Client and Open Server, they cannot process the data if you:

e Upgrade to Adaptive Server version 12.5.
* Drop and re-create the tables with wide columns.
* Insert wide data.

See the Open Client section in this guide for more information.

CHAPTER 7 Data Storage

Heaps of data: tables without clustered indexes

If you create atable on Adaptive Server, but do not create a clustered
index, the tableis stored as a heap. The data rows are not stored in any
particular order. This section describes how select, insert, delete, and
update operations perform on heapswhen thereisno “useful” index to aid
in retrieving data.

The phrase “no useful index” isimportant in describing the optimizer’s
decision to perform atable scan. Sometimes, an index exists on the
columns named in awhere clause, but the optimizer determines that it
would be more costly to use the index than to perform atable scan.

Other chaptersin thisbook describe how the optimizer costs queriesusing
indexes and how you can get more information about why the optimizer
makes these choices.

Table scans are always used when you select all rowsin atable. The only
exception is when the query includes only columnsthat are keysin a
nonclustered index.

For more information, see “Index covering” on page 210.

The following sections describe how Adaptive Server locates rows when
atable has no useful index.

Lock schemes and differences between heaps

The data pagesin an allpages-locked table are linked into adoubly-linked
list of pages by pointerson each page. Pagesin data-only-locked tables are
not linked into a page chain.

In an allpages-locked table, each page stores a pointer to the next pagein
the chain and to the previous page in the chain. When new pages need to
be inserted, the pointers on the two adjacent pages change to point to the
new page. When Adaptive Server scans an allpages-locked table, it reads
the pages in order, following these page pointers.

Pages are al so doubly-linked at each index level of allpages-locked tables,
and the leaf level of indexes on data-only-locked tables. If an allpages-
locked table is partitioned, there is one page chain for each partition.

155

Heaps of data: tables without clustered indexes

Another difference between allpages-locked tables and data-only-locked
tablesisthat data-only-locked tables use fixed row IDs. This means that
row |Ds (a combination of the page number and the row number on the
page) do not change in a data-only-locked table during normal query
processing.

Row |Ds change only when one of the operations that require data-row
copying is performed, for example, during reorg rebuild or while creating
aclustered index.

For information on how fixed row 1Ds affect heap operations, see
“Deleting from a data-only locked heap table” on page 159 and “Data-
only-locked heap tables’ on page 160.

Select operations on heaps

When you issue a select query on a heap, and there is no useful
nonclustered index, Adaptive Server must scan every datapageinthetable
to find every row that satisfies the conditions in the query. There may be
one row, many rows, or no rows that match.

Allpages-locked heap tables

For allpages-locked tables, Adaptive Server reads the first column in
sysindexes for the table, reads the first page into cache, and follows the
next page pointers until it finds the last page of the table.

Data-only locked heap tables

156

Since the pages of data-only-locked tables are not linked in a page chain,
aselect query on a heap table uses the table’'s OAM and the allocation
pagesto locate al the rows in the table. The OAM page points to the
allocation pages, which point to the extents and pages for the table.

CHAPTER 7 Data Storage

Inserting data into an allpages-locked heap table

When you insert data into an allpages-locked heap table, the datarow is
always added to the last page of the table. If thereisno clustered index on
atable, and the table is not partitioned, the sysindexes.root entry for the
heap table stores a pointer to the last page of the heap to locate the page
where the data needs to be inserted.

If the last page isfull, anew pageis allocated in the current extent and
linked onto the chain. If the extentisfull, Adaptive Server looksfor empty
pages on other extents being used by the table. If no pagesare available, a
new extent is alocated to the table.

Conflicts during heap inserts

One of the severe performance limits on heap tables that use allpages
locking is that the page must be locked when the row is added, and that
lock isheld until the transaction completes. If many users are trying to
insert into an allpages-locked heap table at the sametime, each insert must
wait for the preceding transaction to complete.

This problem of last-page conflicts on heaps is true for:
» Single row inserts using insert

* Multiplerow insertsusing select into Or insert...select, or several insert
statements in a batch

» Bulk copy into thetable

Some workarounds for | ast-page conflicts on heaps include:

» Switching to datapages or datarows locking

» Creating aclustered index that directs the inserts to different pages

» Partitioning the table, which creates multiple insert points for the
table, giving you multiple “last pages’ in an allpages-locked table

Other guidelines that apply to all transactions where there may be lock
conflictsinclude:

» Keeping transactions short

* Avoiding network activity and user interaction whenever possible,
once atransaction acquires locks

157

Heaps of data: tables without clustered indexes

Inserting data into a data-only-locked heap table

When usersinsert datainto adata-only-locked heap table, Adaptive Server
tracks page numbers where the inserts have recently occurred, and keeps
the page number as a hint for future tasks that need space. Subsequent
inserts to the table are directed to one of these pages. If the pageisfull,
Adaptive Server alocates a new page and replaces the old hint with the

new page number.

Blocking while many users are simultaneously inserting datais much less
likely to occur during inserts to data-only-locked heap tables. When
blocking occurs, Adaptive Server allocates asmall number of empty pages
and directs new inserts to those pages using these newly allocated pages

as hints.

For datarows-locked tables, bl ocking occursonly whilethe actual changes
to the data page are being written; although row locks are held for the
duration of the transaction, other rows can be inserted on the page. The
row-level locks allow multiple transaction to hold locks on the page.

There may be slight blocking on data-only-locked tables, because
Adaptive Server allowsasmall amount of blocking after many pageshave
just been alocated, so that the newly allocated pages are filled before

additional pages are allocated.

If conflicts occur during heap inserts

Conflicts during inserts to heap tables are greatly reduced for data-only-
locked tables, but can still take place. If these conflicts slow inserts, some

workarounds can be used, including:

« Switching to datarows locking, if the table uses datapages locking

e Using aclustered index to spread data inserts

« Partitioning thetable, which provides additional hintsand allows new
pages to be allocated on each partition when blocking takes place

Deleting data from a heap table

When you delete rows from a heap table, and there is no useful index,
Adaptive Server scansthe datarowsin thetableto find the rowsto del ete.
It has no way of knowing how many rows match the conditions in the

query without examining every row.

158

CHAPTER 7 Data Storage

Deleting from an allpages-locked heap table

When adatarow is deleted from a page in an allpages-locked table, the
rows that follow it on the page move up so that the data on the page
remains contiguous.

Deleting from a data-only locked heap table

When you delete rows from a data-only-locked heap table, atable scan is
required if there is no useful index. The OAM and allocation pages are
used to locate the pages.

The space on the page is not recovered immediately. Rowsin data-only-
locked tables must maintain fixed row 1Ds, and need to bereinserted in the
same place if the transaction is rolled back.

After adelete transaction completes, one of the following processes shifts
rows on the page to make the space usage contiguous:

¢ The housekeeper process
¢ Aninsert that needsto find space on the page

¢ Thereorg reclaim_space command

Deleting the last row on a page

If you delete the last row on a page, the page is deallocated. If other pages
on the extent are still in use by the table, the page can be used again by the
table when a page is needed.

If all other pages on the extent are empty, the entire extent is deallocated.
It can be allocated to other objects in the database. The first data page for
atable or an index is never deallocated.

Updating data on a heap table

Like other operations on heaps, an update that has no useful index on the
columnsin the where clause performs atable scan to locate the rows that
need to be changed.

Allpages-locked heap tables
Updates on all pages-locked heap tables can be performed in several ways:

159

Heaps of data: tables without clustered indexes

« |f thelength of the row does not change, the updated row replacesthe
existing row, and no data moves on the page.

« |f thelength of the row changes, and thereis enough free space on the
page, the row remains in the same place on the page, but other rows
move up or down to keep the rows contiguous on the page.

The row offset pointers at the end of the page are adjusted to point to
the changed row locations.

e |f therow does not fit on the page, the row is deleted from its current
page, and the “new” row isinserted on the last page of the table.

This type of update can cause a conflict on the last page of the heap,
just asinserts do. If there are any nonclustered indexes on the table,
all index references to the row need to be updated.

Data-only-locked heap tables

160

One of the requirements for data-only-locked tablesisthat the row ID of
adatarow never changes (except during intentional rebuilds of the table).
Therefore, updatesto data-only-locked tables can be performed by thefirst
two methods described above, as long as the row fits on the page.

But when arow in adata-only-locked table is updated so that it no longer
fits on the page, a process called row forwar ding performsthe following

steps:
e Therow isinserted onto a different page, and

e A pointer to the row ID on the new page is stored in the original
location for the row.

Indexes do not need to be modified when rows are forwarded. All indexes
still point to the original row 1D.

If the row needs to be forwarded a second time, the original location is
updated to point to the new page—the forwarded row is never more than
one hop away from its original location.

Row forwarding increases concurrency during update operations because
indexes do not have to be updated. It can slow dataretrieval, however,
because atask needsto read the page at the original location and then read
the page where the forwarded datais stored.

Forwarded rows can be cleared from atable using the reorg command.

CHAPTER 7 Data Storage

For more information on updates, see “How update operations are
performed” on page 464.

How Adaptive Server performs I/O for heap operations

When a query needs a data page, Adaptive Server first checksto seeif the
pageis available in adata cache. If the pageis not available, then it must
be read from disk. A newly installed Adaptive Server has a single data
cache configured for 2K 1/0. Each /O operation reads or writes asingle
Adaptive Server data page. A System Administrator can:

» Configure multiple caches
» Bindtables, indexes, or text chains to the caches

» Configure data caches to perform /O in page-sized multiples, up to
eight data pages (one extent)

To use these caches most efficiently, and reduce 1/O operations, the
Adaptive Server optimizer can:

» Chooseto prefetch up to eight data pages at atime

» Choose between different caching strategies

Sequential prefetch, or large I/O

Adaptive Server's data caches can be configured by a System
Administrator to allow large 1/0s. When a cache is configured to allow
large I/Os, Adaptive Server can choose to prefetch data pages.

Caches have buffer pools that depend on the logical page sizes, alowing
Adaptive Server to read up to an entire extent (eight data pages) inasingle
I/O operation.

Since much of the time required to perform 1/O operationsistaken up in
seeking and positioning, reading eight pagesin a16K 1/O performs nearly
eight times as fast as a single-page, 2K 1/0, so queries that table scan
should perform much better using large 1/O.

161

Caches and object bindings

When several pages are read into cache with asingle I/O, they are treated
as aunit; they age in cache together, and if any page in the unit has been
changed while the buffer was in cache, all pages are written to disk asa
unit.

For more information on configuring memory cachesfor large 1/0O, see
Chapter 14, “Memory Use and Performance.”

Caches and object bindings

A table can be bound to aspecific cache. If atableisnot bound to aspecific
cache, but its database is bound to a cache, all of its1/O takes placein that
cache.

Otherwise, its 1/0 takes place in the default data cache. The default data
cache can be configured for large I/O. If your applications include some
heap tables, they will probably perform best when they use a cache
configured for 16K 1/O.

Heaps, 1/0, and cache strategies

Each Adaptive Server data cache is managed as an MRU/LRU (most
recently used/least recently used) chain of buffers. Asbuffers age in the
cache, they move from the MRU end toward the LRU end.

When changed pagesin the cache pass a point called thewash marker, on
the MRU/LRU chain, Adaptive Server initiates an asynchronouswrite on
any pages that changed while they were in cache. This helps ensure that
when the pages reach the LRU end of the cache, they are clean and can be
reused.

Overview of cache strategies

162

Adaptive Server has two magjor strategies for using its data cache
efficiently:

e LRU replacement strategy, usually used for pages that a query needs
to access more than once or pages that must be updated

CHAPTER 7 Data Storage

« MRU, or fetch-and-discard replacement strategy, used for pages that
aquery needs to read only once

LRU replacement strategy

LRU replacement strategy readsthe data pages sequentially into the cache,
replacing a“least recently used” buffer. The buffer is placed on the MRU
end of the data buffer chain. It moves toward the LRU end as more pages
areread into the cache.

Figure 7-2: LRU strategy takes a clean page from the LRU end of
the cache

! >

" I I I l h

Clean buffer /

Wash marker
D Clean page I Dirty page

When LRU strategy is used
Adaptive Server uses LRU strategy for:

To disk

e Statements that modify data on pages

¢ Pagesthat are needed more than once by a single query
¢ OAM pages

¢ Most index pages

e Any query where LRU strategy is specified

MRU replacement strategy

MRU (fetch-and-discard) replacement strategy is used for table scanning
on heaps. This strategy places pages into the cache just before the wash
marker, as shown in Figure 7-3.

163

Caches and object bindings

Figure 7-3: MRU strategy places pages just before the wash marker

Wash marker

MRU I I I LRU

Clean page

Fetch-and-discard is most often used for queries where a page is needed
only once by the query. Thisincludes:

e Most table scans in queries that do not use joins
e Oneor moretablesin ajoin query

Placing the pages needed only once at the wash marker meansthat they do
not push other pages out of the cache.

The fetch-and-discard strategy is used only on pages actually read from
the disk for the query. If apageisalready in cache due to earlier activity
on the table, the pageis placed at the MRU end of the cache.

Figure 7-4: Finding a needed page in cache

MRU Wash marker LRU

i
N

Select operations and caching
Under most conditions, single-table select operations on a heap use:

e Thelargest I/O available to the table and
e Fetch-and-discard (MRU) replacement strategy

For heaps, select operations performing large 1/0 can be very effective.
Adaptive Server can read sequentially through all the extentsin atable.

164

CHAPTER 7 Data Storage

Unless the heap is being scanned as the inner table of a nested-loop join,
the data pages are needed only once for the query, so MRU replacement
strategy reads and discards the pages from cache.

Note Largel/O on alpages-locked heapsis effective only when the page
chains are not fragmented.

See “Maintaining heaps’ on page 168 for information on maintaining
heaps.

Data modification and caching

Adaptive Server tries to minimize disk writes by keeping changed pages
in cache. Many users can make changes to a data page whileit residesin
the cache. The changes are logged in the transaction log, but the changed
data and index pages are not written to disk immediately.

Caching and inserts on heaps
For inserts to heap tables, the insert takes place:

¢ Onthelast page of atable that uses allpages locking

¢ Onapagethat wasrecently used for asuccessful insert, on atablethat
uses data-only-locking

If aninsert isthefirst row on anew page for the table, a clean data buffer
isallocated to store the data page, as shown in Figure 7-5. This page starts
to move down the MRU/LRU chain in the data cache as other processes
read pages into memory.

If asecond insert to the page takes place while the page is still in memory,
the pageislocated in cache, and moves back to the top of the MRU/LRU
chain.

165

Caches and object bindings

Figure 7-5: Inserts to a heap page in the data cache

First insert on a page takes a clean
page from the LRU and puts it on the

Wash rcarker LRU

‘\ Clean page //

Second insert on a page finds the page in
cache, and puts in back at the MRU

The changed data page remains in cache until it reaches the LRU end of
the chain of pages. The page may be changed or referenced many times
whileit isin the cache, but it iswritten to disk only when one of the
following takes place:

MR

c

* The page moves past the wash marker.
e A checkpoint or the housekeeper task writes it to disk.

“Data cache” on page 298 explains more about these processes.

Caching, update and delete operations on heaps

When you update or delete arow from aheap table, the effects on the data
cachearesimilar totheprocessfor inserts. If apageisalready inthe cache,
the row is changed and then the whole buffer (a single page or more,
depending on the 1/0 size) is placed on the MRU end of the chain.

If the pageisnot in cache, it isread from disk into cache and examined to
determine whether the rows on the page match query clauses. Its
placement on the MRU/LRU chain depends on whether data on the page
needs to be changed:

« |f data on the page needs to be changed, the buffer is placed on the
MRU end. It remainsin cache, where it can be updated repeatedly or
read by other users before being flushed to disk.

166

CHAPTER 7 Data Storage

e If data on the page does not need to be changed, the buffer is placed
just before the wash marker in the cache.

Asynchronous prefetch and I/O on heap tables

Asynchronous prefetch hel ps speed the performance of queries that
perform table scans. Any task that needs to perform a physical 1/0

relinquishes the server’s engine (CPU) while it waits for the 1/O to

complete.

If atable scan needs to read 1000 pages, and nhone of those pages are in
cache, performing 2K 1/0O with no asynchronous prefetch means that the
task would make 1000 loops, executing on the engine, and then sleeping
to wait for I/0. Using 16K 1/0 would required only 125 such loops.

Asynchronous prefetch can request all of the pages on an allocation unit
that belong to a table when the task fetches the first page from the
allocation unit. If the 1000-page table resideson just 4 allocation units, the
task requires many fewer cycles through the execution and sleep loops.

Type of /O Loops Stepsin each loop

2K 110 1000 Reguest a page.

no prefetch Sleep until the page has been read from disk.
Wait for aturn to run on the Adaptive Server engine
(CPU).
Read the rows on the page.

16K I/0 125 Request an extent.

no prefetch Sleep until the extent has been read from disk.
Wait for aturn to run on the Adaptive Server engine
(CPU).
Read the rows on the 8 pages.

Prefetch 4 Request all the pagesin an allocation unit.

Sleep until the first page has been read from disk.
Wait for aturn to run on the Adaptive Server engine
(CPU).

Read all the rows on all the pagesin cache.

Actua performance depends on cache size and other activity in the data
cache.

For more information on asynchronous prefetching, see Chapter 25,
“Tuning Asynchronous Prefetch.”

167

Heaps: pros and cons

Heaps: pros and cons

Sequential disk accessis efficient, especially with large 1/0 and
asynchronous prefetch. However, the entire table must always be scanned
to find any value, having a potentially large impact in the data cache and
other queries.

Batch inserts can do efficient sequential 1/0. However, thereis a potential
bottleneck on the last page if multiple processes try to insert data
concurrently.

Heapswork well for small tables and tables where changes are infrequent,
but they do not work well for most large tables for queries that need to
return a subset of the rows.

Heaps can be useful for tables that:

e Arefairly small and use only afew pages

* Do not require direct access to a single, random row
e Do not require ordering of result sets

Partitioned heaps are useful for tables with frequent, large volumes of
batch inserts where the overhead of dropping and creating clustered
indexes is unacceptable. With this exception, there are very few
justifications for heap tables. Most applications perform better with
clustered indexes on the tables.

Maintaining heaps

Over time, 1/0 on heaps can become inefficient as storage becomes
fragmented. Deletes and updates can result in:

e Many partialy filled pages
« Inefficient large 1/0, since extents may contain many empty pages

* Forwarded rows in data-only-locked tables

168

CHAPTER 7 Data Storage

Methods

After deletes and updates have | eft empty space on pages or have left
empty pages on extents, use one of the following techniques to reclaim
space in heap tables:

¢ Usethereorg rebuild command (data-only-locked tables only).
¢ Create and then drop a clustered index.
e Usehbcp (the bulk copy utility) and truncate table.

Using reorg rebuild to reclaim space

reorg rebuild copies all data rows to new pages and rebuilds any
nonclustered indexes on the heap table. reorg rebuild can be used only on
data-only-locked tables.

Reclaiming space by creating a clustered index

You can create and drop a clustered index on a heap table to reclaim space
if updates and deletes have created many partially full pagesin the table.
To create aclustered index, you must have free spacein the database of at
least 120% of the table size.

See " Determining the space available for maintenance activities’ on page
370 for more information.

Reclaiming space using bcp
To reclaim space with bep:
1 Copy thetable out to afile using bcp.
2 Truncate the table with the truncate table command.
3 Copy thetable back in again with bcp.

See" Stepsfor partitioning tables” on page 104 for proceduresfor working
with partitioned tables.

For more information on bep, see the Utility Guide manual for your
platform.

169

Transaction log: a special heap table

Transaction log: a special heap table

170

Adaptive Server’s transaction log is a special heap table that stores
information about data modifications in the database. The transaction log
isaways aheap table; each new transaction record is appended to the end
of thelog. The transaction log does not have any indexes.

Other chaptersin this book describe ways to enhance the performance of
the transaction log. The most important technique is to use the log on
clauseto create database to place your transaction log on aseparate device
from your data.

See the System Administration Guide for more information on creating
databases.

Transaction log writes occur frequently. Do not let them contend with
other 1/O in the database, which usually happens at scattered locations on
the data pages.

Place logs on separate physical devices from the data and index pages.
Sincethelog is sequential, the disk head on the log device rarely needsto
perform seeks, and you can maintain a high 1/0O rate to the log.

Besidesrecovery, these kinds of operations require reading the transaction
log:

« Any datamodification that is performed in deferred mode.

e Triggersthat contain references to the inserted and del eted tables.

Thesetables are built from transaction log records when thetables are
queried.

¢ Transaction rollbacks.

In most cases, the transaction log pages for these kinds of queries are till
available in the data cache when Adaptive Server needs to read them, and
disk I/O is not required.

CHAPTER 8

Indexing for Performance

This chapter introduces the basic query analysistools that can help you
choose appropriate indexes and discussesindex selection criteriafor point
queries, range queries, and joins.

Topic Page
How indexes affect performance 171
Symptoms of poor indexing 172
Index limits and requirements 175
Choosing indexes 176
Techniques for choosing indexes 184
Index and statistics maintenance 187
Additional indexing tips 188

How indexes affect performance

Carefully considered indexes, built on top of agood database design, are
the foundation of a high-performance Adaptive Server installation.
However, adding indexes without proper analysis can reduce the overall
performance of your system. Insert, update, and del ete operations can take
longer when alarge number of indexes need to be updated.

Analyze your application workload and create indexes as necessary to
improve the performance of the most critical processes.

The Adaptive Server query optimizer uses a probabilistic costing model.
It analyzesthe costs of possible query plans and chooses the plan that has
the lowest estimated cost. Since much of the cost of executing a query
consists of disk 1/0, creating the correct indexes for your applications
means that the optimizer can use indexes to:

» Avoid table scans when accessing data
» Target specific data pages that contain specific valuesin apoint query
» Establish upper and lower bounds for reading data in a range query

171

Detecting indexing problems

« Avoid data page access completely, when an index covers a query

e Useordered data to avoid sorts or to favor merge joins over nested-
loop joins

In addition, you can create indexes to enforce the uniqueness of data and
to randomize the storage location of inserts.

Detecting indexing problems

Some of the major indicationsof insufficient or incorrect indexing include:
e A sdect statement takes too long.
e A join between two or more tables takes an extremely long time.

e Select operations perform well, but data modification processes
perform poorly.

* Point queries (for example, “where colvalue = 3”) perform well, but
range queries (for example, “where colvalue > 3 and colvalue < 30")
perform poorly.

These underlying problems are described in the following sections.

Symptoms of poor indexing

172

A primary goal of improving performance with indexesis avoiding table
scans. In atable scan, every page of the table must be read from disk.

A query searching for aunique value in atable that has 600 data pages
requires 600 physical and logical reads. If anindex pointsto thedatavalue,
the same query can be satisfied with 2 or 3 reads, a performance
improvement of 200 to 300 percent.

On asystem with a 12-ms. disk, thisis a difference of severa seconds
compared to less than a second. Heavy disk 1/O by asingle query has a
negative impact on overall throughput.

CHAPTER 8 Indexing for Performance

Lack of indexes is causing table scans

If select operationsand joinstaketoo long, it probably indicatesthat either
an appropriate index doesnot exist or, it exists, but isnot being used by the
optimizer.

showplan output reports whether the table is being accessed via atable
scan or index. If you think that an index should be used, but showplan
reports a table scan, dbcc traceon(302) output can help you determine the
reason. It displays the costing computations for all optimizing query
clauses.

If thereis no clause isincluded in dbcc traceon(302) output, there may be
problems with the way the clause is written. If a clause that you think
should limit the scan isincluded in dbcc traceon(302) output, look
carefully at its costing, and that of the chosen plan reported with dbcc
traceon(310).

Index is not selective enough

Anindex isselectiveif it helpsthe optimizer find a particular row or aset
of rows. Anindex on auniqueidentifier such asaSocial Security Number
is highly selective, sinceit lets the optimizer pinpoint asingle row. An
index on a nonunique entry such as sex (M, F) is not very selective, and
the optimizer would use such an index only in very special cases.

Index does not support range queries

Too many indexes slow

Generally, clustered indexes and covering indexes provide good
performance for range queries and for search arguments (SARG) that
match many rows. Range queries that reference the keys of noncovering
indexes use the index for ranges that return a limited number of rows.

As the number of rows the query returns increases, however, using a
nonclustered index or a clustered index on a data-only-locked table can
cost more than atable scan.

data modification

If data modification performance is poor, you may have too many
indexes.While indexes favor select operations, they slow down data
modifications.

173

Detecting indexing problems

Every insert or delete operation affects the leaf level, (and sometimes
higher levels) of a clustered index on a data-only-locked table, and each
nonclustered index, for any locking scheme.

Updates to clustered index keys on allpages-locked tables can move the
rows to different pages, requiring an update of every nonclustered index.
Analyzetherequirementsfor each index and try to eliminate thosethat are
unnecessary or rarely used.

Index entries are too large

Try to keep index entriesas small as possible. You can createindexeswith
keys up to 600 bytes, but those indexes can store very few rows per index
page, which increases the amount of disk 1/0 needed during queries. The
index has more levels, and each level has more pages.

The following example uses values reported by sp_estspace to
demonstrate how the number of index pages and leaf levels required
increases with key size. It creates nonclustered indexes using 10-, 20, and
40-character keys.

create tabl e denotable (cl10 char(10),
c20 char(20),
c40 char (40))
create index t10 on denotabl e(cl10)
create index t20 on denotabl e(c20)
create i ndex t40 on denotabl e(c40)
sp_estspace denotabl e, 500000

Table 8-1 shows the results.

Table 8-1: Effects of key size on index size and levels

Index, key size Leaf-level pages Index levels
t10, 10 bytes 4311 3
t20, 20 bytes 6946 3
t40, 40 bytes 12501 4

The output shows that the indexes for the 10-column and 20-column keys
each have three levels, while the 40-column key requires afourth level.

The number of pagesrequired is more than 50 percent higher at each level.

Exception for wide data rows and wide index rows

174

Indexes with wide rows may be useful when:

CHAPTER 8 Indexing for Performance

The table has very wide rows, resulting in very few rows per data
page.

The set of queries run on the table provides logical choices for a
covering index.

Queries return a sufficiently large number of rows.

For example, if atable has very long rows, and only one row per page, a
query that needs to return 100 rows needs to access 100 data pages. An
index that covers this query, even with long index rows, can improve
performance.

For example, if the index rows were 240 bytes, the index would store 8
rows per page, and the query would need to access only 12 index pages.

Index limits and requirements
The following limits apply to indexes in Adaptive Server:

You can create only one clustered index per table, since the datafor a
clustered index is ordered by index key.

You can create a maximum of 249 nonclustered indexes per table.

A key can be made up of as many as 31 columns. The maximum
number of bytes per index key is 600.

When you create a clustered index, Adaptive Server requires empty
free space to copy the rows in the table and allocate space for the
clustered index pages. It also requires space to re-create any
nonclustered indexes on the table.

The amount of space required can vary, depending on how full the
table's pages are when you begin and what space management
properties are applied to the table and index pages.

See “ Determining the space available for maintenance activities’ on
page 370 for more information.

The referential integrity constraints unique and primary key create
unique indexes to enforce their restrictions on the keys. By defaullt,
unique constraints create nonclustered indexes and primary key
constraints create clustered indexes.

175

Choosing indexes

Choosing indexes

When you are working with index selection you may want to ask these
questions:

* What indexes are associated currently with a given table?
* What are the most important processes that make use of the table?

* Whatistheratio of select operationsto data modifications performed
on the table?

» Hasaclustered index been created for the table?
e Canthe clustered index be replaced by a nonclustered index?
« Do any of the indexes cover one or more of the critical queries?

* Isacompositeindex required to enforce the uniqueness of a
compound primary key?

e What indexes can be defined as unique?

e What are the major sorting requirements?

* Do some queries use descending ordering of result sets?

* Do theindexes support joins and referential integrity checks?
» Doesindexing affect update types (direct versus deferred)?

e What indexes are needed for cursor positioning?

« If dirty reads are required, are there unique indexes to support the
scan?

e Should IDENTITY columns be added to tables and indexes to
generate unique indexes? Unique indexes are required for updatable
cursors and dirty reads.

When deciding how many indexesto use, consider:

e Space constraints

e Access pathsto table

» Percentage of data modifications versus select operations
» Performance requirements of reports versus OLTP

» Performance impacts of index changes

* How often you can use update statistics

176

CHAPTER 8 Indexing for Performance

Index keys and logical keys

Index keys need to be differentiated from logical keys. Logical keys are
part of the database design, defining the relationships between tables:
primary keys, foreign keys, and common keys.

When you optimizeyour queriesby creating indexes, thelogical keysmay
or may not be used as the physical keys for creating indexes. You can
create indexes on columns that are not logical keys, and you may have
logical keysthat are not used asindex keys.

Choose index keys for performance reasons. Create indexes on columns
that support the joins, search arguments, and ordering requirementsin
queries.

A common error isto create the clustered index for atable on the primary
key, even though it is never used for range queries or ordering result sets.

Guidelines for clustered indexes
These are general guidelines for clustered indexes:

* Most alpages-locked tables should have clustered indexes or use
partitions to reduce contention on the last page of heaps.

In a high-transaction environment, the locking on the last page
severely limits throughput.

» If your environment requiresalot of inserts, do not placethe clustered
index key on a steadily increasing value such as an IDENTITY
column.

Choose a key that places inserts on random pages to minimize lock
contention while remaining useful in many queries. Often, the
primary key does not meet this condition.

This problem isless severe on data-only-locked tables, but isamajor
source of lock contention on allpages-locked tables.

» Clustered indexes provide very good performance when the key
matches the search argument in range queries, such as:

where colvalue >= 5 and col value < 10

In allpages-locked tables, rows are maintained in key order and pages
arelinked in order, providing very fast performance for queries using
aclustered index.

177

Choosing indexes

In data-only-locked tables, rows are in key order after the index is
created, but the clustering can decline over time.

e Other good choicesfor clustered index keysare columns used in order
by clausesandinjains.

e |If possible, do not include frequently updated columns as keysin
clustered indexes on allpages-locked tables.

When the keys are updated, the rows must be moved from the current
location to anew page. Also, if theindex is clustered, but not unique,
updates are done in deferred mode.

Choosing clustered indexes

Choose indexes based on the kinds of where clauses or joinsyou perform.
Choicesfor clustered indexes are;

e Theprimary key, if it is used for where clauses and if it randomizes
inserts

e Columnsthat are accessed by range, such as:

col 1l between 100 and 200
col12 > 62 and < 70

e Columns used by order by
e Columnsthat are not frequently changed
e Columnsusedinjoins

If there are several possible choices, choose the most commonly needed
physical order as afirst choice.

Asasecond choice, look for range queries. During performance testing,
check for “hot spots’ due to lock contention.

Candidates for nonclustered indexes

178

When choosing columns for nonclustered indexes, consider al the uses
that were not satisfied by your clustered index choice. In addition, look at
columns that can provide performance gains through index covering.

Ondata-only-locked tables, clustered indexes can performindex covering,
since they have a leaf level above the datalevel.

CHAPTER 8 Indexing for Performance

On alpages-locked tables, noncovered range queries work well for
clustered indexes, but may or may not be supported by nonclustered
indexes, depending on the size of the range.

Consider using composite indexesto cover critical queries and to support
less frequent queries:

» Themost critical queries should be able to perform point queries and
matching scans.

e Other queries should be able to perform nonmatching scans using the
index, which avoids table scans.

Other indexing guidelines
Here are some other considerations for choosing indexes:

» If anindex key isunique, define it as unique so the optimizer knows
immediately that only one row matchesasearch argument or ajoinon
the key.

» |If your database design uses referential integrity (the references
keyword or the foreign key...references keywords in the create table
statement), the referenced columns must have a unique index, or the
attempt to create the referential integrity constraint fails.

However, Adaptive Server does not automatically create an index on
the referencing column. If your application updates primary keys or
deletes rows from primary key tables, you may want to create an
index on the referencing column so that these lookups do not perform
atable scan.

» |If your applications use cursors, see“ Index use and requirements for
cursors’ on page 643.

» |If you are creating an index on atable where there will be alot of
insert activity, use fillfactor to temporarily minimize page splits and
improve concurrency and minimize deadlocking.

» If youarecreating an index on aread-only table, use afillfactor of 100
to make the table or index as compact as possible.

» Keepthesizeof thekey assmall aspossible. Your index treesremain
flatter, accelerating tree traversals.

* Usesmall datatypes whenever it fits your design.

179

Choosing indexes

e Numerics compare dightly faster than strings internally.

e Variable-length character and binary types require more row
overhead than fixed-length types, so if thereis little difference
between the average length of a column and the defined length,
use fixed length. Character and binary types that accept null
values are variable-length by definition.

e Whenever possible, use fixed-length, non-null types for short
columns that will be used asindex keys.

e Besurethat the datatypes of the join columnsin different tables are
compatible. If Adaptive Server has to convert a datatype on one side
of ajoin, it may not use an index for that table.

See" Datatype mismatches and query optimization” on page 401 for
more information.

Choosing nonclustered indexes

When you consider adding nonclustered indexes, you must weigh the
improvement in retrieval time against the increase in data modification
time. In addition, you need to consider these questions:

e How much space will the indexes use?

* How volétileisthe candidate column?

* How selective are the index keys? Would a scan be better?
e Aretherealot of duplicate values?

Because of data modification overhead, add nonclustered indexes only
when your testing shows that they are helpful.

Performance price for data modification
Each nonclustered index needs to be updated, for al locking schemes:

* For each insert into the table
* For each delete from the table

Anupdateto thetablethat changespart of anindex’skey requiresupdating
just that index.

For tables that use allpages locking, all indexes need to be updated:

180

CHAPTER 8 Indexing for Performance

« For any update that changes the location of arow by updating a
clustered index key so that the row moves to another page

« For every row affected by a data page split

For allpages-locked tables, exclusive locks are held on affected index
pagesfor theduration of thetransaction, increasing lock contention aswell
as processing overhead.

Some applications experience unacceptable performance impacts with
only three or four indexes on tables that experience heavy data
modification. Other applications can perform well with many more tables.

Choosing composite indexes

If your analysis shows that more than one column is a good candidate for
aclustered index key, you may be able to provide clustered-like access
with a composite index that covers a particular query or set of queries.
These include:

* Rangequeries.

» Vector (grouped) aggregates, if both the grouped and grouping
columnsareincluded. Any search arguments must also beincluded in
the index.

* Queriesthat return a high number of duplicates.
* Queriesthat include order by.

* Queriesthat table scan, but use a small subset of the columns on the
table.

Tablesthat are read-only or read-mostly can be heavily indexed, aslong as
your database has enough space available. If thereislittle update activity
and high select activity, you should provideindexesfor al of your frequent
gueries. Be sureto test the performance benefits of index covering.

Key order and performance in composite indexes

Covered queries can provide excellent response time for specific queries
when the leading columns are used.

With the composite nonclustered index on au_Iname, au_fname, au_id, this
query runsvery quickly:

181

Choosing indexes

182

select au_id
from aut hors
where au fnane = "Eliot" and au_l nane = "W/ k"

This covered point query needs to read only the upper levels of the index
and asingle pagein theleaf-level row in the nonclustered index of a 5000-
row table.

This similar-looking query (using the same index) does not perform quite
aswell. Thisquery is till covered, but searches on au_id:

sel ect au_fnane, au_ | nane
from aut hors
where au_id = "Al714224678"

Sincethis query does not include the leading column of theindex, it hasto
scan the entire leaf level of the index, about 95 reads.

Adding acolumnto the select list in the query above, which may seemlike
aminor change, makes the performance even worse:

sel ect au_fnane, au_l nane, phone
from aut hors
where au_id = "Al714224678"

This query performs atable scan, reading 222 pages. In this case, the
performance is noticeably worse. For any search argument that is not the
leading column, Adaptive Server has only two possible access methods: a
table scan, or a covered index scan.

It does not scan the leaf level of the index for a non-leading search
argument and then access the data pages. A composite index can be used
only when it covers the query or when the first column appearsin the
where clause.

For a query that includes the leading column of the composite index,
adding a column that is not included in the index adds only a single data
page read. This query must read the data page to find the phone number:

sel ect au_id, phone
from aut hors
where au fnanme = "Eliot" and au_|l nanme = "W/ kK"

Table 8-2 showsthe performance characteristics of different where clauses
with anonclustered index on au_Iname, au_fname, au_id and no other
indexes on the table.

CHAPTER 8 Indexing for Performance

Table 8-2: Composite nonclustered index ordering and

performance
Performance with the indexed Performance with other
Columns in the where clause columns in the select list columns in the select list
au_Iname Good; index used to descend tree; data Good; index used to descend tree;
of au Iname. au fname level is not accessed data is accessed (one more page
- B read per row)

or au_Iname, au_fname, au_id

au_fname
or au_id

or au_fname, au_id

Moderate; index is scanned to return Poor; index not used, table scan
values

Choose the ordering of the composite index so that most queries form a
prefix subset.

Advantages and disadvantages of composite indexes
Composite indexes have these advantages:

A composite index provides opportunities for index covering.

If queries provide search arguments on each of the keys, the
composite index requires fewer 1/Os than the same query using an
index on any single attribute.

A composite index is agood way to enforce the uniqueness of
multiple attributes.

Good choices for composite indexes are;

L ookup tables
Columns that are frequently accessed together
Columns used for vector aggregates

Columns that make a frequently used subset from a table with very
wide rows

The disadvantages of composite indexes are:

Composite indexes tend to have large entries. This means fewer
index entries per index page and more index pages to read.

An updateto any attribute of acompositeindex causesthe index to be
modified. The columns you choose should not be those that are
updated often.

183

Techniques for choosing indexes

Poor choices are:
e Indexesthat are nearly as wide asthetable

e Compositeindexeswhereonly aminor key isused in thewhere clause

Techniques for choosing indexes

This section presents astudy of two queriesthat must accessasingletable,
and the indexing choices for these two queries. The two queries are:

e A range query that returns alarge number of rows

e A point query that returns only one or two rows

Choosing an index for a range query

184

Assume that you need to improve the performance of the following query:

select title
fromtitles
where price between $20. 00 and $30. 00

Some basic statistics on the table are:
e Thetable has 1,000,000 rows, and uses allpages locking.

e Thereare 10 rows per page; pagesare 75 percent full, so the table has
approximately 135,000 pages.

« 190,000 (19%) of the titles are priced between $20 and $30.
With no index, the query would scan all 135,000 pages.

With a clustered index on price, the query would find the first $20 book
and begin reading sequentially until it getsto thelast $30 book. With pages
about 75 percent full, the average number of rows per pageis 7.5. To read
190,000 matching rows, the query would read approximately 25,300
pages, plus 3 or 4 index pages.

With anonclustered index on price and random di stribution of price values,
using the index to find the rows for this query requires reading about 19
percent of the leaf level of the index, about 1,500 pages.

CHAPTER 8 Indexing for Performance

If the price values are randomly distributed, the number of data pages that
must be read is likely to be high, perhaps as many data pages as there are
qualifying rows, 190,000. Since atable scan requires only 135,000 pages,
you would not want to use this nonclustered.

Another choiceis anonclustered index on price, title. The query can
perform amatching index scan, using the index to find the first page with
aprice of $20, and then scanning forward on the leaf level until it findsa
price of more than $30. Thisindex requires about 35,700 leaf pages, so to
scan the matching leaf pages requires reading about 19 percent of the
pages of thisindex, or about 6,800 reads.

For this query, the covering nonclustered index on price, title is best.

Adding a point query with different indexing requirements

The index choice for the range query on price produced a clear
performance choice when all possibly useful indexes were considered.
Now, assume this query also needs to run against titles:

sel ect price
fromtitles
where title = "Looking at Leeks"

You know that there are very few duplicatetitles, so thisquery returnsonly
one or two rows.

Considering both this query and the previous query, Table 8-3 shows four
possible indexing strategies and estimate costs of using each index. The
estimates for the numbers of index and data pages were generated using a
fillfactor of 75 percent with sp_estspace:

sp_estspace titles, 1000000, 75
The values were rounded for easier comparison.

Table 8-3: Comparing index strategies for two queries

Possible index choice Index pages Range query on price Point query on title
1 Nonclustered on title 36,800 Clustered index, about 26,600 Nonclustered index, 6 1/0Os
Clustered on price 650 pages (135,000 *.19)
With 16K 1/0: 3,125 1/Os
2 Clustered on title 3,770 Table scan, 135,000 pages Clustered index, 6 1/0s
Nonclustered on price 6,076 With 16K 1/0: 17,500 1/0s

185

Techniques for choosing indexes

Possible index choice Index pages Range query on price Point query on title
3 Nonclustered on title, 36,835 Nonmatching index scan, Nonclustered index,
price about 35,700 pages 51/0s
With 16K 1/0: 4,500 I/Os
4 Nonclustered on price, 36,835 Matching index scan, about Nonmatching index scan,

title

6,800 pages (35,700 *.19) about 35,700 pages
With 16K 1/O: 850 1/0Os With 16K 1/O: 4,500 1/Os

186

Examining the figuresin Table 8-3 shows that:

The
two

You

For the range query on price, choice 4 is best; choices 1 and 3 are
acceptable with 16K 1/0.

For the point query on titles, indexing choices 1, 2, and 3 are excellent.

best indexing strategy for acombination of these two queriesisto use
indexes:

Choice 4, for range queries on price.

Choice 2, for point queries on title, since the clustered index requires
very little space.

may need additional information to help you determine which

indexing strategy to use to support multiple queries. Typical
considerations are:

What isthefrequency of each query? How many times per day or per
hour isthe query run?

What are the response time requirements? I's one of them especially
time critical ?

What are the response time requirements for updates? Does creating
more than one index slow updates?

Isthe range of valuestypical? Isawider or narrower range of prices,
such as $20 to $50, often used? How do different ranges affect index
choice?

Isthere alarge data cache? Are these queries critical enough to
provide a 35,000-page cache for the nonclustered composite indexes
in index choice 3 or 4? Binding thisindex to its own cache would
provide very fast performance.

What other queries and what other search arguments are used? Isthis
table frequently joined with other tables?

CHAPTER 8 Indexing for Performance

Index and statistics maintenance

To ensure that indexes evolve with your system:

» Monitor queries to determine if indexes are still appropriate for your
applications.

Periodically, check the query plans, as described in Chapter 35,
“Using set showplan,” and the 1/O statistics for your most frequent
user queries. Pay specia attention to noncovering indexes that
support range queries. They are most likely to switch to table scansif
the data distribution changes

» Drop and rebuild indexes that hurt performance.
» Keepindex statistics up to date.

» Use space management propertiesto reduce page splits and to reduce
the frequency of maintenance operations.

Dropping indexes that hurt performance

Drop indexes that hurt performance. If an application performs data
modifications during the day and generates reports at night, you may want
to drop some indexes in the morning and re-create them at night.

Many system designers create numerous indexes that are rarely, if ever,
actually used by the query optimizer. Make sure that you base indexes on
the current transactions and processes that are being run, not on the
original database design.

Check query plansto determine whether your indexes are being used.

Foe more information on maintaining indexes see“Maintaining index and
column statistics” on page 360 and “ Rebuilding indexes’ on page 361.

Choosing space management properties for indexes

Space management properties can help reduce the frequency of index
maintenance. In particular, fillfactor can reduce the number of page splits
on leaf pages of nonclustered indexes and on the data pages of allpages-
locked tables with clustered indexes.

187

Additional indexing tips

See Chapter 13, “ Setting Space Management Properties,” for more
information on choosing fillfactor values for indexes.

Additional indexing tips

Here are some additional suggestions that can lead to improved
performance when you are creating and using indexes:

* Modify thelogical design to make use of an artificial column and a
lookup table for tables that require alarge index entry.

* Reducethe size of an index entry for afrequently used index.

« Dropindexesduring periodswhen frequent updates occur and rebuild
them before periods when frequent selects occur.

« |If you do frequent index maintenance, configure your server to speed
up the sorting.

See“ Configuring Adaptive Server to speed sorting” on page 358 for
information about configuration parameters that enable faster sorting.

Creating artificial columns

When indexes become too large, especially composite indexes, it is
beneficial to create an artificial column that is assigned to arow, with a
secondary lookup tablethat isused to translate between theinternal 1D and
the original columns.

This may increase response time for certain queries, but the overall
performance gain due to a more compact index and shorter datarowsis
usually worth the effort.

Keeping index entries short and avoiding overhead

Avoid storing purely numeric IDs as character data. Use integer or
numeric |Ds whenever possible to:

e Save storage space on the data pages

e Makeindex entries more compact

188

CHAPTER 8 Indexing for Performance

¢ Improve performance, since internal comparisons are faster

Index entries on varchar columns reguire more overhead than entries on
char columns. For short index keys, especially thosewithlittlevariationin
length in the column data, use char for more compact index entries.

Dropping and rebuilding indexes

You might drop nonclustered indexes prior to a major set of inserts, and
then rebuild them afterwards. In that way, the inserts and bulk copies go

faster, since the nonclustered indexes do not have to be updated with every
insert.

For more information, see “Rebuilding indexes’ on page 361.

189

Additional indexing tips

190

CHAPTER 9

How Indexes Work

This chapter describes how Adaptive Server storesindexes and how it
uses indexes to speed data retrieval for select, update, delete, and insert
operations.

Topic Page
Types of indexes 192
Clustered indexes on allpages-locked tables 194
Nonclustered indexes 203
Index covering 210
Indexes and caching 213

Indexes are the most important physical design element inimproving
database performance:

» Indexeshelp prevent table scans. Instead of reading hundreds of data
pages, afew index pages and data pages can satisfy many queries.

» For some queries, data can be retrieved from a nonclustered index
without ever accessing the data rows.

» Clustered indexes can randomize data inserts, avoiding insert “hot
spots’ on the last page of atable.

* Indexes can help avoid sorts, if the index order matches the order of
columnsin an order by clause.

In addition to their performance benefits, indexes can enforce the
uniqueness of data.

Indexes are database objects that can be created for atable to speed direct
access to specific datarows. Indexes store the values of the key(s) that
were named when the index was created, and logical pointers to the data
pages or to other index pages.

Although indexes speed data retrieval, they can slow down data
modifications, since most changes to the data al so require updating the
indexes. Optimal indexing demands:

191

Types of indexes

e Anunderstanding of the behavior of queries that access unindexed
heap tables, tables with clustered indexes, and tables with
nonclustered indexes

e Anunderstanding of the mix of queriesthat run on your server

e Anunderstanding of the Adaptive Server optimizer

Types of indexes

Index pages

192

Adaptive Server provides two types of indexes:

e Clustered indexes, where the table datais physically stored in the
order of the keys on the index:

» For allpages-locked tables, rows are stored in key order on pages,
and pages are linked in key order.

» For data-only-locked tables, indexesare used to direct the storage
of data on rows and pages, but strict key ordering is not
maintained.

* Nonclustered indexes, where the storage order of datain thetableis
not related to index keys

You can create only one clustered index on atable because thereis only
one possible physical ordering of the data rows. You can create up to 249
nonclustered indexes per table.

A table that has no clustered index is called a heap. The rowsin the table
arein no particular order, and all new rows are added to the end of the
table. Chapter 7, “Data Storage,” discusses heaps and SQL operations on

heaps.

Index entries are stored as rows on index pagesin aformat similar to the
format used for datarows on data pages. |ndex entries store the key values
and pointersto lower levels of theindex, to the data pages, or to individual
datarows.

Adaptive Server uses B-tree indexing, so each node in the index structure
can have multiple children.

CHAPTER 9 How Indexes Work

Root level

Leaf level

Index entries are usually much smaller than a datarow in adata page, and
index pages are much more densely populated than data pages. If adata
row has 200 bytes (including row overhead), there are 10 rows per page.

An index on a 15-byte field has about 100 rows per index page (the
pointers require 4-9 bytes per row, depending on the type of index and the
index level).

Indexes can have multiple levels:
¢ Root level
e Ledf level

¢ Intermediate level

Theroot level isthe highest level of theindex. Thereisonly oneroot page.
If an allpages-locked tableis very small, so that the entireindex fitson a
single page, there are no intermediate or leaf levels, and the root page
stores pointers to the data pages.

Data-only-locked tables always have aleaf level between the root page
and the data pages.

For larger tables, the root page stores pointers to the intermediate level
index pages or to leaf-level pages.

The lowest level of theindex isthe leaf level. At the leaf level, the index
contains akey value for each row in the table, and the rows are stored in
sorted order by the index key:

e For clustered indexes on allpages-locked tables, the leaf level isthe
data. No other level of theindex contains oneindex row for each data
row.

¢ For nonclustered indexes and clustered indexes on data-only-locked
tables, the leaf level contains the index key value for each row, a
pointer to the page where the row is stored, and a pointer to the rows
on the data page.

Theledf level isthelevel just abovethedata; it contains oneindex row
for each data row. Index rows on the index page are stored in key
value order.

193

Clustered indexes on allpages-locked tables

Intermediate level

Index Size

All levels between the root and leaf levels are intermediate levels. An
index on alarge table or an index using long keys may have many
intermediate levels. A very small allpages-locked table may not have an
intermediate level at al; the root pages point directly to the leaf level.

Table 9-1 describes the new limitsfor index sizefor APL and DOL tables:

Table 9-1: Index row-size limit

User-visible index row-size Internal index row-
Page size limit size limit
2K (2048 bytes) 600 650
4K (4096bytes) 1250 1310
8K (8192 bytes) | 2600 2670
16K (16384 bytes) | 5300 5390

Because you can create tables with columns wider than the limit for the
index key, these columns become non-indexable. For example, if you
perform the following on a 2K page server, then try to create an index on
€3, the command fails and Adaptive Server issues an error message
because column c3is larger than the index row-size limit (600 bytes).

create table t1 (
cl int

c2 int

c¢3 char (700))

“Non-indexable” does not mean that you cannot use these columnsin
search clauses. Even though a column is non-indexable (asin c3, above),
you can till create statistics for it. Also, if you include the column in a
where clause, it will be evaluated during optimization.

Clustered indexes on allpages-locked tables

194

In clustered indexeson allpages-locked tables, |eaf-level pagesarealsothe
data pages, and all rows are kept in physical order by the keys.

CHAPTER 9 How Indexes Work

Physical ordering means that:
¢ All entrieson adata page are in index key order.

¢ By following the “next page” pointers on the data pages, Adaptive
Server reads the entire table in index key order.

Ontheroot and intermediate pages, each entry pointsto apage on the next
level.

Clustered indexes and select operations

To select a particular last name using a clustered index, Adaptive Server
first uses sysindexes to find the root page. It examines the values on the
root page and then follows page pointers, performing a binary search on
each page it accesses as it traverses the index. See Figure 9-1 below.

Figure 9-1: Selecting a row using a clustered index, allpages-
locked table

select *
from employeeﬁ) _ Page 1132
where Iname = "Green Key Pointer Bennet
Page 1007 Chan
Bennet 1132 Dull
Key Pointer Greane 1133 Edwards
Page 1001 Hunter 1z Page 1133
Bennet 1007 Greane
Karsen 1009 Page 1009 Green
Smith 1062 Karsen 1315 Greene
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

195

Clustered indexes on allpages-locked tables

Ontheroot level page, “Green” is greater than “Bennet,” but less than
Karsen, so the pointer for “Bennet” is followed to page 1007. On page
1007, “Green” is greater than “Greane,” but less than “Hunter,” so the
pointer to page 1133 isfollowed to the data page, where the row islocated
and returned to the user.

Thisretrieval viathe clustered index requires:
* Oneread for theroot level of the index

* Oneread for the intermediate level

e Oneread for the data page

These reads may come either from cache (called alogical read) or from
disk (called aphysical read). Ontablesthat arefrequently used, the higher
levels of the indexes are often found in cache, with lower levels and data
pages being read from disk.

Clustered indexes and insert operations

196

When you insert arow into an allpages-locked table with a clustered
index, the datarow must be placed in physical order according to the key
value on the table.

Other rows on the data page move down on the page, as needed, to make
room for the new value. Aslong as there is room for the new row on the
page, the insert does not affect any other pagesin the database.

The clustered index is used to find the location for the new row.

Figure 9-2 shows a simple case where there is room on an existing data
page for the new row. In this case, the key valuesin the index do not need
to change.

CHAPTER 9 How Indexes Work

Figure 9-2: Inserting arow into an allpages-locked table with a
clustered index

insert employees (Iname) Page 1132
values ("Greco") Bennet
. Chan
Key Pointer Dull
Edwards
Page 1007
. Bennet 1132
Key Pointer SR 1133 Page 1133
| ! Greane
Page 1001 Hunter 1127 Greco
Bennet 1007 Green
Karsen 1009 Greene
Smith 1062 Page 1009
\ Karsen 1315
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Page splitting on full data pages

If there is not enough room on the data page for the new row, a page split
must be performed.

A new data pageis allocated on an extent already in use by the table.
If there is no free page available, a new extent is allocated.

The next and previous page pointers on adjacent pages are changed to
incorporate the new page in the page chain. This requires reading
those pages into memory and locking them.

Approximately half of the rows are moved to the new page, with the
new row inserted in order.

The higher levels of the clustered index change to point to the new
page.

If the table also has nonclustered indexes, all pointers to the affected
datarows must be changed to point to the new page and row locations.

197

Clustered indexes on allpages-locked tables

In some cases, page splitting is handled dlightly differently.
See “Exceptions to page splitting” on page 198.

In Figure 9-3, the page split requires adding anew row to an existing index
page, page 1007.

Figure 9-3: Page splitting in an allpages-locked table with a
clustered index

Page 1133
Greane Before
Greco Page 1132
Green Bennet
Greene Chan
Dull
Edwards
insert employees (Iname)
values ("Greaves") Key Pointer Page 1133
Greane
Page 1007 Greaves
Bennet 1132 Greco
. Greane 1133
Key Pointer Green i
Page 1001 Hunter 1127
Bennet 1007 Page 1144
Karsen 1009 Page 1009 Green
Smith 1062 Karsen 1315 Greene
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Exceptions to page splitting
There are exceptions to 50-50 page splits:

« |f youinsert ahugerow that cannot fit on either the page before or the
page after the page that requires splitting, two new pages are
allocated, one for the huge row and one for the rows that follow it.

198

CHAPTER 9 How Indexes Work

e If possible, Adaptive Server keeps duplicate values together when it
splits pages.

e If Adaptive Server detectsthat all inserts are taking place at the end
of the page, due to aincreasing key value, the page is not split when
itistimeto insert anew row that does not fit at the bottom of the page.
Instead, a new page is alocated, and the row is placed on the new

page.

e If Adaptive Server detectsthat insertsaretaking placein order at other
locations on the page, the page is split at the insertion point.

Page splitting on index pages

If anew row needsto be added to afull index page, the page split process
on the index page is similar to the data page split.

A new pageisallocated, and half of the index rows are moved to the new
page.

A new row isinserted at the next highest level of the index to point to the
new index page.

Performance impacts of page splitting

Page splits are expensive operations. In addition to the actual work of
moving rows, allocating pages, and logging the operations, the cost is
increased by:

¢ Updating the clustered index itself

¢ Updating the page pointers on adjacent pages to maintain page
linkage

e Updating all nonclustered index entriesthat point to the rows affected
by the split

When you create aclustered index for atablethat will grow over time, you
may want to usefillfactor to leave room on data pagesand index pages. This
reduces the number of page splits for atime.

See “Choosing space management properties for indexes’ on page 187.

199

Clustered indexes on allpages-locked tables

Overflow pages

200

Special overflow pages are created for nonunique clustered indexes on
allpages-locked tableswhen anewly inserted row has the same key asthe
last row on afull datapage. A new data page is alocated and linked into
the page chain, and the newly inserted row is placed on the new page (see
Figure 9-4).

Figure 9-4: Adding an overflow page to a clustered index, allpages-
locked table

insert employees (Iname)

values("Greene")

Before insert

After insert

Page 1133
Greane
Page 1133 Greco
Greane Green
Greco Greene
Green
Greene Overflow data | Page 1156
Greene
Page 1134 page
Gresham
Gridley
Page 1134
Gresham
Gridley
Data pages

The only rows that will be placed on this overflow page are additional
rows with the same key value. In a nonunique clustered index with many
duplicate key values, there can be numerous overflow pages for the same
value.

The clustered index does not contain pointers directly to overflow pages.
Instead, the next page pointers are used to follow the chain of overflow
pages until avalue isfound that does not match the search value.

CHAPTER 9 How Indexes Work

Clustered indexes and delete operations

When you delete a row from an all pages-locked table that has a clustered
index, other rows on the page move up to fill the empty space so that the
data remains contiguous on the page.

Figure 9-5 shows a page that has four rows before a del ete operation
removesthe second row on the page. The two rowsthat follow the deleted

row are moved up.

Figure 9-5: Deleting a row from a table with a clustered index

Data to be

<:| deleted

Before delete Page 1133
Greane
Green
Greco
Greene
delete Page 1132
from employees Bennet
where Iname = "Green") Chan
Key Pointer Dull
Page 1007 Edwards
Bennet 1132
. Greane 1133
Key ~ Pointer Hunter | 1127
Page T00T Page 1133
Bennet 1007 greane
Karsen 1009 Page 1009 reco
Smith 1062 T Karsen 1315 Greene
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

201

Clustered indexes on allpages-locked tables

Deleting the last row on a page

202

If you delete the last row on a data page, the page is deall ocated and the
next and previous page pointers on the adjacent pages are changed.

The rows that point to that page in the leaf and intermediate levels of the
index are removed.

If the deallocated data page is on the same extent as other pages belonging
to thetable, it can be used again when that table needs an additional page.

If the deallocated data page is the last page on the extent that belongs to
the table, the extent is also deallocated and becomes available for the
expansion of other objectsin the database.

In Figure 9-6, which shows the table after the deletion, the pointer to the
deleted page has been removed from index page 1007 and the following
index rows on the page have been moved up to keep the used space
contiguous.

CHAPTER 9 How Indexes Work

Figure 9-6: Deleting the last row on a page (after the delete)

delete
from employees Page 1133
where Iname = "Gridley Greane Page TI3
Key Pointer gi:\:e
Page R1007
] Bennet 1132
Key Pointer Greane 1133
Page 1001 /'Hunter 1127 Empty page
Bennet 1007 available for
Karsen 1009 reallocation
Smith 1062 Page 1009
Karsen 1315
Page 1127
Hunter
Jenkins
Root page Intermediate Data pages

Index page merges
If you delete a pointer from an index page, leaving only one row on that
page, the row is moved onto an adjacent page, and the empty pageis
deallocated. The pointers on the parent page are updated to reflect the
changes.

Nonclustered indexes

The B-tree works much the same for nonclustered indexes as it does for
clustered indexes, but there are some differences. In nonclustered indexes:

203

Nonclustered indexes

Leaf pages revisited

e Theleaf pages are not the same as the data pages.
e Theleaf level stores one key-pointer pair for each row in thetable.

« Theleaf-level pages store the index keys and page pointers, plus a
pointer to the row offset table on the data page. This combination of
page pointer plus the row offset number is called therow 1D.

e Theroot andintermediate levels storeindex keys and page pointersto
other index pages. They also store the row 1D of the key’s data row.

With keys of the same size, nonclustered indexes require more space than
clustered indexes.

The leaf page of an index is the lowest level of theindex where all of the
keysfor the index appear in sorted order.

In clustered indexes on allpages-locked tables, the data rows are stored in
order by the index keys, so by definition, the datalevel isthe leaf level.
Thereisno other level of the clustered index that contains one index row
for each data row. Clustered indexes on allpages-locked tables are sparse
indexes.

Thelevel above the data contains one pointer for every data page, not data
row.

In nonclustered indexes and clustered indexes on data-only-locked tables,
thelevel just abovethe dataisthe leaf level: it contains akey-pointer pair
for each datarow. These indexes are dense. At the level above the data,
they contain one index row for each data row.

Nonclustered index structure

204

The table in Figure 9-7 shows a nonclustered index on Iname. The data
rows at the far right show pages in ascending order by employee_id (10,
11, 12, and so on) because thereis a clustered index on that column.

Theroot and intermediate pages store:
e Thekey value
e TherowID

CHAPTER 9 How Indexes Work

e The pointer to the next level of the index
The leaf level stores:

e Thekey value

* Therow ID

Therow ID in higher levels of the index is used for indexes that allow
duplicate keys. If a data modification changes the index key or deletes a
row, therow ID positively identifiesall occurrences of the key at al index
levels.

Figure 9-7: Nonclustered index structure

) Page 1242
Key POInter 10 O’Leary
11 Ringer
. Page 1132 12 White
Key RowID Pointer ’Bennet 14211 13 Jenkins
Page 1007 (D:hﬁ” ﬁggi’
Bennet |1421,1 |1132 E(ljj i ho1ss Page 1307
Greane |13074 |1133 wards ! 14| Hunter
Key ~RowD Pointer /Ihunter (13071 [1127 15 | Smith
Page 1001 Page 1133 16 Ringer
Bennet 4211 1007 \Greane 1B07,4 17 Greane
Karsen 14113 10 Page 1009 green]4124163 2 Page 1421
; reene ,
Smith— 1307.2 11062 1 arsen (14113 1315 18 | Bennet
19 Green
Page 1127 20 Yokomoto
Hunter 1807,1
Jenkins 1p42.4
22 Greene
23 White
Root page Intermediate Leaf pages Data pages

205

Nonclustered indexes

Nonclustered indexes and select operations

select *
from employee
where Iname = "Green"

Key RowlD Pointer
Page 1001
Bennet |1421,1 |1007

Karsen |[1411,3 |1009
Smith 1307,2 | 1062

Root page

206

When you select arow using anonclustered index, the search starts at the
root level. sysindexes.root stores the page number for the root page of the
nonclustered index.

In Figure 9-8, “Green” isgreater than “Bennet,” but lessthan “Karsen,” so
the pointer to page 1007 is followed.

“Green” isgreater than “ Greane,” but less than “Hunter,” so the pointer to
page 1133 isfollowed. Page 1133 is the leaf page, showing that the row
for “Green” isrow 2 on page 1421. This page isfetched, the “2" bytein
the offset table is checked, and the row is returned from the byte position
on the data page.

Figure 9-8: Selecting rows using a nonclustered index

Key Pointer PagE T222
Ray | O’Leary
BennP;[ge lliizl 1 Ron | Ringer
Key RowID Pointer Chan 1129‘3 Lisa | White
' Bob | Jenkins

Page T007 Dull 1409,1
Bennet |1421,1 |1132 Edwards | 10185 Page 1307
Greane |1307,4 |1133 Tim | Hunter
Hunter |1307,1 |1127 \ Page TI33 Liv | Smith
Greane | 1307,4 Ann | Ringer

Jo Greane

Green 14212

Page 1009 Greene | 1409,2 Page 1421
Karsen |1411,3 |1315 lan Bennet
Andy| Green
Page 1127 Les Yokomoto
Hunter 1307,1
Jenkins 12424 Page 1409
Chad| Dull
Eddy| Greene
Gabe| White
Kip Greco
Intermediate Leaf pages Data pages

CHAPTER 9 How Indexes Work

Nonclustered index performance
The query in Figure 9-8 requires the following 1/O:
e Oneread for theroot level page
¢ Oneread for theintermediate level page
¢ Oneread for the leaf-level page
¢ Oneread for the data page

If your applications use aparticular nonclustered index frequently, the root
and intermediate pages will probably be in cache, so only one or two
physical disk I/Os need to be performed.

Nonclustered indexes and insert operations

When you insert rows into a heap that has a nonclustered index and no
clustered index, the insert goes to the last page of the table.

If the heap is partitioned, the insert goes to the last page on one of the
partitions. Then, the nonclustered index is updated to include the new row.

If the table has a clustered index, it is used to find the location for the row.
The clustered index is updated, if necessary, and each nonclustered index
is updated to include the new row.

Figure 9-9 showsaninsert into aheap tablewith anonclustered index. The
row is placed at the end of thetable. A row containing the new key value
andtherow ID isalsoinserted into theleaf level of the nonclustered index.

207

Nonclustered indexes

Figure 9-9: An insert into a heap table with a nonclustered index

insert employees

(empid, Iname) Pa
: ge 1247

values(24, "Greco") Key Pointer Ray | O'Leary
Page 1132 Ron | Ringer

. Bennet 1421,1 Lisa | White

Key RowD Pointer |chan |11203 Bob | Jenkins

i g(ljj\llllards 1322&13 Page 1307

Key RowlD Pointer Bennet [1421,1 [1132) Tim Hunter
vl ol p— N
Bennet [1421,1 [.007 unter ' Greaneg 13074 Ann | Ringer
Karsen |1411,3 1009 ! Jo Greane

Greco 1409,4

Smith [1307,2 1062 g TG Green 14212 Page 1421
Karsen [14113 [1315 Greene | 1409,2 lan |~ Bennet

Andy| Green
Page TI27 Les Yokomoto

Hunter 1307,1

Jenkins | 1242,4 Page 1409

Chad| Dull

Edi Greene

Gabe| White

,Kip Greco

Root page Intermediate Leaf pages Data pages

Nonclustered indexes and delete operations

When you delete arow from atable, the query can use a nonclustered
index on the columnsin the where clause to |ocate the data row to delete,
as shown in Figure 9-10.

Therow in the leaf level of the nonclustered index that points to the data
row is also removed. If there are other nonclustered indexes on the table,
the rows on the leaf level of those indexes are also del eted.

208

CHAPTER 9 How Indexes Work

delete employees
where Iname = "Green"

Key RowlD Pointer

Page 1001
Bennet |1421,1 |1007
Karsen |1411,3 |[1009
Smith 1307,2 | 1062

Root page

Figure 9-10: Deleting a row from a table with a nonclustered index

Page 1242
Ray | O’Leary
Key Pointer Ron | Ringer
Lisa | White
Page 1132 Bob | Jenkins
Key RowlD Pointer Bennet | 14211
Chan 1129,3
Page 1007 Dull 1409,1 _ Page 1307
Bennet 14211 |1132 Edwards | 10185 Tim) Hunter
Greane |1307.4 |1133 Liv_ | Smith
Hunter 13071 |1127 \ Ann | Ringer
Page 1133 Jo Greane

Greane 1307,4
Greco 1409,4 Page 471

Page 1009 Green 14212 lan Bennet
Karsen [14113 |1315 Greene | 1409,2 \.
Les | Yokomoto

Page 1127
Hunter 1307,1
Jenkins 1242,4

Page 1409
Chad | Dull
47 Eddy | Greene

Gabe| White
}, Kip Greco

Intermediate Leaf pages |"| Data pages

If the delete operation removes the last row on the data page, the pageis
deallocated and the adjacent page pointers are adjusted in allpages-locked
tables. Any references to the page are also deleted in higher levels of the
index.

If the delete operation leaves only asingle row on an index intermediate
page, index pages may be merged, as with clustered indexes.

See “Index page merges’ on page 203.

Thereisno automatic page merging on data pages, so if your applications
make many random deletes, you may end up with data pages that have
only asingle row, or afew rows, on a page.

209

Index covering

Clustered indexes on data-only-locked tables

Index covering

210

Clustered indexes on data-only-locked tables are structured like
nonclustered indexes. They havealeaf |evel abovethe datapages. Theleaf
level containsthe key values and row ID for each row in thetable.

Unlike clustered indexes on allpages-locked tables, the datarowsin adata-
only-locked table are not necessarily maintained in exact order by the key.
Instead, the index directs the placement of rows to pages that have
adjacent or nearby keys.

When arow needsto be inserted in a data-only-locked table with a
clustered index, the insert uses the clustered index key just before the
valueto beinserted. Theindex pointers are used to find that page, and the
row isinserted on the pageif thereisroom. If thereis not room, therow is
inserted on a pagein the same allocation unit, or on another allocation unit
already used by the table.

To provide nearby space for maintai ning data clustering during insertsand
updates to data-only-locked tables, you can set space management
properties to provide space on pages (using fillfactor and exp_row_size) or
on alocation units (using reservepagegap).

See Chapter 13, “ Setting Space Management Properties.”

Index covering can produce dramatic performance improvements when
all columns needed by the query are included in the index.

You can create indexes on more than one key. These are called composite
indexes. Composite indexes can have up to 31 columns adding up to a
maximum 600 bytes.

If you create a composite nonclustered index on each column referenced
in the query’s select list and in any where, having, group by, and order by
clauses, the query can be satisfied by accessing only the index.

Sincethe leaf level of anonclustered index or a clustered index on a data-
only-locked table contains the key values for each row in atable, queries
that access only the key values can retrieve the information by using the
leaf level of the nonclustered index asif it were the actual table data. This
is called index covering.

CHAPTER 9 How Indexes Work

There are two types of index scans that can use an index that coversthe
query:

¢ Thematching index scan

¢ The nonmatching index scan

For both types of covered queries, the index keys must contain all the
columns named in the query. Matching scans have additional
requirements.

“Choosing composite indexes’ on page 181 describes query types that
make good use of covering indexes.

Covering matching index scans

Letsyou skip the last read for each row returned by the query, theread that
fetches the data page.

For point queries that return only asingle row, the performance gainis
dlight — just one page.

For range queries, the performance gain islarger, since the covering index
saves one read for each row returned by the query.

For a covering matching index scan to be used, the index must contain all
columns named in the query. In addition, the columnsin the where clauses
of the query must include the leading column of the columnsin the index.

For example, for an index on columns A, B, C, and D, the following sets
can perform matching scans: A, AB, ABC, AC, ACD, ABD, AD, and
ABCD. The columns B, BC, BCD, BD, C, CD, or D do not include the
leading column and can be used only for nonmatching scans.

When doing a matching index scan, Adaptive Server uses standard index
access methods to move from the root of the index to the nonclustered | eaf
page that contains the first row.

In Figure 9-11, the nonclustered index on Iname, fname covers the query.
The where clause includes the leading column, and all columnsin the
select list are included in the index, so the data page need not be accessed.

211

Index covering

Figure 9-11: Matching index access does not have to read the data

row
select fname, Iname S
from employees . age.
where Iname = "Greene" Key Pointer 10 O.Leary
Page 1560 11} Ringer
Bennet,Sam 1580,1 12 Whltg
Chan,Sandra 1129,3 13 Jenkins
Dull,Normal 1409,1
Edwards,Linda | 1018,5 “ Paga jr?t“ei
Key RowID Pointer 15 Smith
Page 1544 Page 1561 16 Ringer
Bennet,Sam | 1580,1 1560 Greane,Grey 1307,4 17 | Greane
GreaneGrey | 16494 1561 Greco,Del 14094
Hunter,Hugh 1649,1 1843 \ Green,th_a 1421,2 Page 1580
Greene,Cindy 1703,2 18 Bennet
20 Yokomoto
Page 1843
Hunter,Hugh 1307,1
Jenkins,Ray 12424
Page 1703
21 Dull
22 Greene
23 White
24 Greco
Root page Intermediate Leaf pages Data pages

Covering nonmatching index scans

When the columns specified in the where clause do not include theleading
column in the index, but al columns named in the select list and other
query clauses (such as group by or having) are included in the index,
Adaptive Server saves |/O by scanning the entire leaf level of the index,
rather than scanning the table.

It cannot perform amatching scan because the first column of theindex is
not specified.

The query in Figure 9-12 shows a nonmatching index scan. This query
does not use the leading columns on theindex, but all columnsrequiredin
the query are in the nonclustered index on Iname, fname, emp_id.

212

CHAPTER 9 How Indexes Work

select Iname, emp_id
from employees

The nonmatching scan must examine all rowsontheleaf level. It scansall
leaf level index pages, starting from the first page. It has no way of
knowing how many rows might match the query conditions, so it must
examine every row intheindex. Since it must begin at the first page of the
leaf level, it can use the pointer in sysindexes.first rather than descending

the index.

Figure 9-12: A nonmatching index scan

where fname = "Rita" Key Pointer

Page 1560
sysindexes.first / Bennet,Sam,409... 1580,1
Chan,Sandra,817... 1129,3
Dull,Normal,415... 1409,1
Edwards,Linda,238... | 1018,5

Key Rowl Pointer

Page 1544 Page T56T
Bennet,Sam,409... [1580,1 [1560 Greane,Grey,486... 13074
Greane,Grey,486... |1649,4 (1561 Greco,Del 672.. 14094
Hunter,Hugh,457... | 1649,1 |1843 Green Rita,398.. 14212
Greene,Cindy,127... 1703,2

Page 1843
Hunter,Hugh,457... 1307,1
Jenkins,Ray,723... 12424

\/
Root page Intermediate Leaf pages

Indexes and caching

“How Adaptive Server performs 1/O for heap operations’ on page 161
introduces the basic concepts of the Adaptive Server data cache, and
shows how caches are used when reading heap tables.

Page 1647

10 O’Leary

11 Ringer

12 White

13 Jenkins
Page 1649

14 Hunter

15 Smith

16 Ringer

17 Greane
Page 1580

18 Bennet

20 Yokomoto
Page 1703

21 Dull

22 Greene

23 White

24 Greco

Data pages

213

Indexes and caching

Index pages get special handling in the data cache, asfollows:
* Root and intermediate index pages always use LRU strategy.

* Index pages can use one cache while the data pages use a different
cache, if the index is bound to a different cache.

e Covering index scans can use fetch-and-discard strategy.

« Index pages can cycle through the cache many times, if number of
index trips is configured.

When a query that uses an index is executed, the root, intermediate, |eaf,
and data pages are read in that order. If these pages are not in cache, they
are read into the MRU end of the cache and are moved toward the LRU
end as additional pages are read in.

Eachtimeapageisfoundin cache, itismoved to the MRU end of the page
chain, so the root page and higher levels of the index tend to stay in the
cache.

Using separate caches for data and index pages

Indexes and the tables they index can use different caches. A System
Administrator or table owner can bind aclustered or nonclustered index to
one cache and its table to another.

Index trips through the cache

214

A specia strategy keeps index pages in cache. Data pages make only a
singletrip through the cache: they areread in at the MRU end of the cache
or placed just before the wash marker, depending on the cache strategy
chosen for the query.

Once the pages reach the LRU end of the cache, the buffer for that pageis
reused when another page needs to be read into cache.

For index pages, acounter controls the number of tripsthat an index page
can make through the cache.

When the counter is greater than O for an index page, and it reaches the
LRU end of the page chain, the counter is decremented by 1, and the page
is placed at the MRU end again.

CHAPTER 9 How Indexes Work

By default, the number of tripsthat anindex page makesthrough the cache
is set to 0. To change the default, a System Administrator can set the
number of index trips configuration parameter

For more information, see the System Administration Guide.

215

Indexes and caching

216

charTer 10 Locking Configuration and

Tuning

This chapter discusses the types of locks used in Adaptive Server and the
commandsthat can affect locking. you can find anintroductionto L ocking

concepts in the Adaptive Server System Administration Guide.

Topic Page
L ocking and performance 217
Configuring locks and lock promotion thresholds 222
Choosing the locking scheme for a tablel 230

Locking and performance

L ocking affects performance of Adaptive Server by limiting concurrency.
Anincrease in the number of simultaneous users of a server may increase
lock contention, which decreases performance. Locks affect performance
when:

Processes wait for locks to be released —

Any time a process waits for another process to complete its
transaction and release its locks, the overall response time and
throughput is affected.

Transactions result in frequent deadl ocks —

A deadlock causes one transaction to be aborted, and the transaction
must be restarted by the application. If deadlocks occur often, it
severely affects the throughput of applications.

Using datapages or datarows locking, or redesigning the way
transactions access the data can help reduce deadlock frequency.

Creating indexes locks tables—

Creating a clustered index locks all users out of the table until the
index is created;

217

Locking and performance

Creating a nonclustered index locks out all updates until it is created.

Either way, you should create indexes when there islittle activity on
your server.

e Turning off delayed deadlock detection causes spinlock contention —

Setting the deadlock checking period to 0 causes more frequent
deadlock checking. The deadlock detection process holds spinlocks
on thelock structures in memory while it looks for deadlocks.

In a high transaction production environment, do not set this
parameter to O (zero).

Using sp_sysmon and sp_object_stats

Many of the following sections suggest that you change configuration
parameters to reduce lock contention.

Use sp_object_stats or sp_sysmon to determineif lock contention isa
problem, and then useit to determine how tuning to reducelock contention
affects the system.

See“Identifying tables where concurrency isaproblem” on page 264 for
information on using sp_object_stats.

See “Lock management” on page 964 for more information about using
sp_sysmon to view lock contention.

If lock contention is a problem, you can use Adaptive Server Monitor to
pinpoint locking problems by checking locks per object.

Reducing lock contention

218

Lock contention can impact Adaptive Server’'s throughput and response
time. You need to consider locking during database design, and monitor
locking during application design.

Solutions include changing the locking scheme for tables with high
contention, or redesigning the application or tables that have the highest
lock contention. For example:

e Add indexesto reduce contention, especially for deletes and updates.
« Keep transactions short to reduce the time that locks are held.

CHAPTER 10 Locking Configuration and Tuning

e Check for “hot spots,” especially for inserts on allpages-locked heap
tables.

Adding indexes to reduce contention

An update or delete statement that has no useful index on its search
arguments performs atable scan and holds an exclusive table lock for the
entire scan time. If the data modification task also updates other tables:

» It can be blocked by select queries or other updates.

* It may be blocked and have to wait while holding large numbers of
locks.

* It can block or deadlock with other tasks.

Creating a useful index for the query allows the data modification
statement to use page or row locks, improving concurrent access to the
table. If creating an index for alengthy update or delete transaction is not
possible, you can perform the operation in a cursor, with frequent commit
transaction statements to reduce the number of page locks.

Keeping transactions short

Any transaction that acquires locks should be kept as short as possible. In
particular, avoid transactions that need to wait for user interaction while

holding locks.
Table 10-1: Examples
With page-level locking With row-level locking
begin tran
sel ect bal ance Intent shared table lock Intent shared table lock
from account hol dl ock Shared page lock Shared row lock

where acct_number = 25 If theuser goestolunchnow, no If theuser goesto lunch now, no

onecan updaterowsonthepage one can update thisrow.
that holds thisrow.

updat e account Intent exclusive table lock Intent exclusive table lock
set bal ance = bal ance + 50 Update page lock on data page Update row lock on data page
where acct _number = 25 followed by followed by
exclusive page lock on data exclusive row lock on data page
page
No one can read rows on the No one can read this row.
conmit tran page that holds this row.

219

Locking and performance

Avoid network traffic as much as possible within transactions. The
network is slower than Adaptive Server. The example below shows a
transaction executed from isg|, sent as two packets.

begin tran isgl batch sent to Adaptive Server
updat e account Locks held waiting for commit
set bal ance = bal ance + 50

where acct_nunber = 25

go

updat e account isgl batch sent to Adaptive Server
set bal ance = bal ance - 50 Locksreleased

where acct_nunber = 45

commit tran

go

K eeping transactions short isespecially crucial for datamodificationsthat
affect nonclustered index keys on allpages-locked tables.

Nonclustered indexes are dense: the level above the data level contains
one row for each row in the table. All inserts and deletes to the table, and
any updates to the key value affect at least one nonclustered index page
(and adjoining pagesin the page chain, if apage split or page deallocation
takes place).

While locking a data page may slow access for a small number of rows,
locks on frequently-used index pages can block accessto amuch larger set
of rows.

Avoiding hot spots

Hot spots occur when all updates take place on a certain page, asin an
allpages-locked heap table, where all inserts happen on the last page of the
page chain.

For example, an unindexed history table that is updated by everyone
always has lock contention on the last page. This sample output from
sp_sysmon showsthat 11.9% of theinserts on aheap table need to wait for

the lock:
Last Page Locks on Heaps
G ant ed 3.0 0.4 185 88.1 %
Wi t ed 0.4 0.0 25 11.9 %

Possible solutions are;

e Changethelock scheme to datapages or datarows locking.

220

CHAPTER 10 Locking Configuration and Tuning

Since these locking schemes do not have chained data pages, they can
allocate additional pages when blocking occurs for inserts.

Partition the table. Partitioning a heap table creates multiple page
chainsin the table, and, therefore, multiple last pages for inserts.

Concurrent inserts to the table are less likely to block one another,
since multiple last pages are available. Partitioning provides away to
improve concurrency for heap tables without creating separate tables
for different groups of users.

See “Improving insert performance with partitions’ on page 88 for
information about partitioning tables.

Createaclustered index to distribute the updates acrossthe data pages
in thetable.

Like partitioning, this solution creates multipleinsertion pointsfor the
table. However, it aso introduces overhead for maintaining the
physical order of the table’s rows.

Additional locking guidelines

These locking guidelines can help reduce lock contention and speed
performance:

Use the lowest level of locking required by each application. Use
isolation level 2 or 3 only when necessary.

Updates by other transactions may be delayed until atransaction
using isolation level 3releasesany of its shared locks at the end of the
transaction.

Useisolationlevel 3 only when nonrepeatable reads or phantoms may
interfere with your desired results.

If only afew queriesrequire level 3, use the holdlock keyword or at
isolation serializing clause in those queries instead of using set
transaction isolation level 3 for the entire transaction.

If most queries in the transaction require level 3, use set transaction
isolation level 3, but use noholdlock oOr at isolation read committed in the
remaining queries that can execute at isolation level 1.

If you need to perform mass inserts, updates, or deletes on active
tables, you can reduce blocking by performing the operation inside a
stored procedure using a cursor, with frequent commits.

221

Configuring locks and lock promotion thresholds

If your application needsto return arow, provide for user interaction,
and then update the row, consider using timestamps and the tsequall
function rather than holdlock.

If you are using third-party software, check the locking model in
applications carefully for concurrency problems.

Also, other tuning efforts can help reduce lock contention. For example, if
aprocess holds locks on a page, and must perform a physical 1/0 to read
an additional page, it holdsthe lock much longer than it would haveif the
additional page had already been in cache.

Better cache utilization or using large 1/0O can reduce lock contentionin
this case. Other tuning efforts that can pay off in reduced lock contention
are improved indexing and good distribution of physical 1/0 across disks.

Configuring locks and lock promotion thresholds
A System Administrator can configure:

The total number of locks available to processes on Adaptive Server

The size of the lock hash table and the number of spinlocks that
protect the page/row lock hashtable, tablelock hashtable, and address
lock hash table

The server-wide lock timeout limit, and the lock timeout limit for
distributed transactions

Lock promotion thresholds, server-wide, for a database or for
particular tables

The number of locks avail able per engine and the number of locks
transferred between the global free lock list and the engines

Seethe Adaptive Server System Administration Guidefor information
on these parameters.

Configuring Adaptive Server’s lock limit

By default, Adaptive Server is configured with 5000 locks. System
administrators can use sp_configure to change this limit. For example:

222

CHAPTER 10 Locking Configuration and Tuning

sp_configure "nunber of |ocks", 25000

You may also heed to adjust thesp_configure parameter total memory, since
each lock uses memory.

The number of locks required by a query can vary widely, depending on
the locking scheme and on the number of concurrent and parallel
processes and the types of actions performed by the transactions.
Configuring the correct number for your system is a matter of experience
and familiarity with the system.

You can start with 20 locksfor each active concurrent connection, plus 20
locksfor each worker process. Consider increasing the number of locksif:

You change tables to use datarows locking
Queriesrun at isolation level 2 or 3, or use serializable or holdlock

You enable parallel query processing, especially for isolation level 2
or 3 queries

You perform many multirow updates

You increase lock promotion thresholds

Estimating number of locks for data-only-locked tables

Changing to data-only locking may require more locks or may reduce the
number of locks required:

Insert commands and locks

Tables using datapages |ocking require fewer locks than tables using
allpages locking, since queries on datapages-locked tables do not
acquire separate locks on index pages.

Tables using datarows locking can require alarge number of locks.
Although no locks are acquired on index pages for datarows-locked
tables, data modification commands that affect many rows may hold
more locks.

Queries running at transaction isolation level 2 or 3 can acquire and
hold very large numbers of row locks.

Aninsert with allpages|ocking requires N+1 1ocks, where N isthe number
of indexes. The sameinsert on adata-only-locked tablelocksonly the data
page or data row.

223

Configuring locks and lock promotion thresholds

select queries and locks

Scans at transaction isolation level 1, with read committed with lock set to
hold locks (1), acquire overlapping locks that roll through the rows or
pages, so they hold, at most, two data page locks at atime.

However, transaction isolation level 2 and 3 scans, especially those using
datarows locking, can acquire and hold very large numbers of locks,
especially when running in parallel. Using datarows locking, and
assuming no blocking during lock promotion, the maximum number of
locks that might be required for asingle table scan is:

row | ock promoti on HWM * parall el _degree

If lock contention from exclusive locks prevents scans from promoting to
atable lock, the scans can acquire a very large number of locks.

Instead of configuring the number of locks to meet the extremely high
locking demands for queries at isolation level 2 or 3, consider changing
applications that affect large numbers of rows to use the lock table
command. This command acquires atable lock without attempting to
acquire individual page locks.

See “lock table Command” on page 251 for information on using lock
table.

Data modification commands and locks

For tables that use the datarows locking scheme, data modification
commands can require many more locks than data modification on
allpages or datapages-locked tables.

For example, atransaction that performs alarge number of insertsinto a
heap table may acquire only afew page locksfor an allpages-locked table,
but requires one lock for each inserted row in a datarows-locked table.
Similarly, transactions that update or delete large numbers of rows may
acquire many more locks with datarows locking.

Configuring the lock hashtable

224

Thelock hashtable size configuration parameter configures the number of
buckets in the lock hash table. The default size of the lock hash tableis
appropriate for most installations.

CHAPTER 10 Locking Configuration and Tuning

However, if you have alarge number of usersand have had to increase the
number of locks parameter to avoid running out of locks, you should check
the average hash chain length with sp_sysmon at peak periods. If the
average length of the hash chains exceeds 4 or 5, consider increased the
value of lock hashtable size to the next power of 2 from its current setting.

The hash chain length may be high during large insert batches, such as
bulk copy operations. Thisis expected behavior, and does not require that
you reset the lock hash table size.

Setting lock promotion thresholds

The lock promotion thresholds set the number of page or row locks
permitted by atask or worker process before Adaptive Server attemptsto
escalate to atable lock on the object. You can set lock promotion
thresholds at the server-widelevel, at the database level, and for individual
tables.

The default values provide good performance for awide range of table
sizes. Configuring the thresholds higher reduces the chance of queries
acquiring table locks, especially for very large tables where queries lock
hundreds of data pages.

Note Lock promotion isawaystwo-tiered: from pagelocksto tablelocks
or from row locks to table locks. Row locks are never promoted to page
locks.

Lock promotion and scan sessions
Lock promotion occurs on a per-scan session basis.

A scan session is how Adaptive Server tracks scans of tables within a
transaction. A single transaction can have more than one scan session for
the following reasons:

« A table may be scanned more than once inside asingle transaction in
the case of joins, subqueries, exists clauses, and so on.

Each scan of the table is a scan session.

e A query executed in parallel scans atable using multiple worker
processes.

225

Configuring locks and lock promotion thresholds

Each worker process has a scan session.

A tablelock is more efficient than multiple page or row locks when an
entire table might eventually be needed. At first, atask acquires page or
row locks, then attempts to escalate to a table lock when a scan session
acquires more page or row locks than the value set by the lock promotion
threshold.

Since lock escalation occurs on a per-scan session basis, the total number
of page or row locksfor asingletransaction can exceed thelock promotion
threshold, as long as no single scan session acquires more than the lock
promotion threshold number of locks. Locks may persist throughout a
transaction, so atransaction that includes multiple scan sessions can
accumulate a large number of locks.

Lock promotion cannot occur if another task holds locksthat conflict with
the type of table lock needed. For instance, if atask holds any exclusive
pagelocks, no other process can promoteto atablelock until theexclusive
page locks are released.

When lock promotion is denied due to conflicting locks, a process can
accumulate page or row locks in excess of the lock promotion threshold
and may exhaust all available locksin Adaptive Server.

The lock promotion parameters are:

« For dlpages-locked tables and datapages-locked tables, page lock
promotion HWM, page lock promotion LWM, and page lock promotion
PCT.

* For datarows-locked tables, row lock promotion HWM, row lock
promotion LWM, and row lock promotion PCT.

The abbreviations in these parameters are:
e« HWM, high water mark
« LWM, low water mark

e PCT, percent

Lock promotion high water mark

page lock promotion HWM and row lock promotion HWM set a maximum
number of page or row locks allowed on a table before Adaptive Server
attempts to escalate to a table lock. The default value is 200.

226

CHAPTER 10 Locking Configuration and Tuning

When the number of locks acquired during a scan session exceeds this
number, Adaptive Server attemptsto acquire atable lock.

Setting the high water mark to avalue greater than 200 reduces the chance
of any task or worker process acquiring atable lock on a particular table.
For example, if a process updates more than 200 rows of avery largetable
during atransaction, setting the lock promation high water mark higher
keeps this process from attempting to acquire atable lock.

Setting the high water mark to less than 200 increases the chances of a
particular task or worker process acquiring atable lock.

Lock promotion low water mark

page lock promotion LWM and row lock promotion LWM set a minimum
number of locks allowed on a table before Adaptive Server attempts to
acquire atable lock. The default valueis 200. Adaptive Server never
attemptsto acquire atablelock until the number of lockson atableisequal
to the low water mark.

The low water mark must be less than or equal to the corresponding high
water mark.

Setting the low water mark to avery high value decreases the chance for a
particular task or worker processto acquire atable lock, which uses more
locks for the duration of the transaction, potentially exhausting all
availablelocksin Adaptive Server. Thispossibility isespecially highwith
gueries that update a large number of rows in a datarows-locked table, or
select large numbers of rows from datarows-locked tables at isolation
levels2 or 3.

If conflicting locks prevent lock promation, you may need to increase the
value of the number of locks configuration parameter.

Lock promotion percent

page lock promotion PCT and row lock promotion PCT set the percentage of
locked pages or rows (based on the table size) above which Adaptive
Server attempts to acquire a table lock when the number of locksis
between the lock promotion HWM and the lock promotion LWM.

The default value is 100.

Adaptive Server attempts to promote page locks to a table lock or row
locksto atable lock when the number of locks on the table exceeds:

227

Configuring locks and lock promotion thresholds

(PCT * nunber of pages or rows in the table) / 100

Setting lock promotion PCT to avery low value increases the chance of a
particular user transaction acquiring atable lock. Figure 10-1 shows how
Adaptive Server determines whether to promote page lockson atableto a

table lock.

Figure 10-1: Lock promotion logic

Does this scan session hold

of page or row locks?

No

lock promotion LWM number 3>

Do not promote
to table lock.

%es

Does this scan session hold Does this scan session hold No Do not promote
lock promotion HWM number No lock promotion PCT . to tablpe lock
of page or row or locks? > page or row locks? .
Yes Yes

Does any other process hold NO. Promote to

exclusive lock on object? table lock.

Yes

Do not promote
to table lock.

Setting server-wide lock promotion thresholds

228

The following command sets the server-wide page lock promotion LWM to
100, the page lock promotion HWM to 2000, and the page lock promotion
PCT to 50 for all datapages-locked and allpages-locked tables:

sp_set pgl ockpronote "server", null, 100, 2000, 50

In thisexample, the task does not attempt to promoteto atablelock unless
the number of locks on the table is between 100 and 2000.

CHAPTER 10 Locking Configuration and Tuning

If acommand requires more than 100 but less than 2000 locks, Adaptive
Server compares the number of locks to the percentage of locks on the
table.

If the number of locksis greater than the number of pages resulting from
the percentage cal culation, Adaptive Server attempts to issue atable lock.

sp_setrowlockpromote sets the configuration parameters for all datarows-
locked tables:

sp_setrow ockpronote "server", null, 300, 500, 50

The default valuesfor lock promotion configuration parameters are likely
to be appropriate for most applications.

Setting the lock promotion threshold for a table or database

Precedence of settings

To configure lock promation values for an individual table or database,
initialize al three lock promotion thresholds. For example:

sp_set pgl ockpronmote "table", titles, 100, 2000, 50
sp_setrow ockpronote "table", authors, 300, 500, 50

After the values areinitialized, you can change any individual value. For
example, to change the lock promotion PCT only, use the following
command:

sp_set pgl ockpronmote "table", titles, null, null, 70
sp_setrow ockpronote "table", authors, null, null,
50

To configure values for a database, use:

sp_set pgl ockpronot e "dat abase", pubs3, 1000, 1100,
45
sp_setrow ockpronot e "dat abase", pubs3, 1000, 1100,
45

You can change the lock promotion thresholds for any user database or an
individual table. Settings for an individual table override the database or
server-wide settings; settings for a database override the server-wide
values.

Server-wide values for lock promotion apply to all user tables on the
server, unless the database or tables have lock promotion values
configured for them.

229

Choosing the locking scheme for a tablel

Dropping database and table settings

To remove table or database lock promotion thresholds, use
sp_dropglockpromote or sp_droprowlockpromote. When you drop a
database’s lock promoation thresholds, tables that do not have lock
promotion thresholds configured use the server-wide values.

When you drop atable’slock promotion threshol ds, Adaptive Server uses
the database’slock promotion thresholds, if they have been configured, or
the server-wide values, if the lock promotion thresholds have not been
configured. You cannot drop the server-wide lock promotion thresholds.

Using sp_sysmon while tuning lock promotion thresholds

Use sp_sysmon to see how many timeslock promotionstake place and the
types of promotions they are.

See “Lock promotions” on page 972 for more information.

If thereisaproblem, look for signsof lock contentioninthe“Granted” and
“Waited” datain the “Lock Detail” section of the sp_sysmon output.

See “Lock detail” on page 968 for more information.

If lock contention is high and lock promotion is frequent, consider
changing the lock promoation thresholds for the tables involved.

Use Adaptive Server Monitor to see how changes to the lock promotion
threshold affect the system at the object level.

Choosing the locking scheme for a tablel

230

In general, choice of lock schemefor anew table should be determined by
the likelihood that applications will experience lock contention on the
table. The decision about whether to change the locking scheme for an
existing table can be based on contention measurements on the table, but
also needs to take application performance into account.

Here are some typical situations and general guidelines for choosing the
locking scheme:

e Applications require clustered access to the data rows due to range
queries or order by clauses

CHAPTER 10 Locking Configuration and Tuning

Allpages locking provides more efficient clustered access than data-
only-locking.

A large number of applications access about 10 to 20% of the data
rows, with many updates and selects on the same data.

Usedatarows or datapages|ocking to reduce contention, especially on
the tables with the highest contention.

Thetable is aheap table that will have a high rate of inserts.

Use datarows locking to avoid contention. If the number of rows
inserted per batch is high, datapages locking is also acceptable.
Allpages locking has more contention for the “last page” of heap
tables.

Applications need to maintain an extremely high transaction rate;
contention islikely to be low.

Use allpages locking; less locking and latching overhead yields
improved performance.

Analyzing existing applications

If your existing applications experience blocking and deadlock problems,
follow the steps below to analyze the problem:

1

2

Check for deadlocks and lock contention:

* Usesp_object_stats to determine the tables where blocking is a
problem.

» ldentify the table(s) involved in the deadlock, either using
sp_object_stats or by enabling the print deadlock information
configuration parameter.

If thetable uses all pages|ocking and hasaclustered index, ensurethat
performance of the modified clustered index structure on data-only-
locked tables will not hurt performance.

See “Tables where clustered index performance must remain high”
on page 234.

If the table uses allpages locking, convert the locking scheme to
datapages | ocking to determine whether it solves the concurrency
problem.

231

Choosing the locking scheme for a tablel

4 Re-runyour concurrency tests. If concurrency isstill anissue, change
the locking scheme to datarows locking.

Choosing alocking scheme based on contention statistics

232

If the locking scheme for the table is allpages, the lock statistics reported
by sp_object_stats include both data page and index lock contention.

If lock contention totals 15% or more for all shared, update, and exclusive
locks, sp_object_stats recommends changing to datapages locking. You
should make the recommended change, and run sp_object_stats again.

If contention using datapages locking is more than 15%, sp_object_stats
recommends changing to datarows locking. This two-phase approach is
based on these characteristics:

» Changing from allpageslocking to either data-only-locking schemeis
time consuming and expensive, in terms of 1/0 cost, but changing
between the two data-only-locking schemes is fast and does not
require copying the table.

« Datarows locking requires more locks, and consumes more locking
overhead.

If your applications experience little contention after you convert
high-contending tables to use datapages locking, you do not need to
incur the locking overhead of datarows locking.

Note The number of locks available to all processes on the server is
limited by the number of locks configuration parameter.

Changing to datapages | ocking reduces the number of locks required,
since index pages are no longer locked.

Changing to datarows locking can increase the number of locks
required, since alock is needed for each row.

See “Estimating number of locks for data-only-locked tables” on
page 223 for more information.

When examining sp_object_stats output, look at tables that are used
together in transactions in your applications. Locking on tables that are
used together in queries and transactions can affect the locking contention
of the other tables.

CHAPTER 10 Locking Configuration and Tuning

Reducing lock contention on onetable could ease lock contention on other
tables aswell, or it could increase lock contention on another table that
was masked by blocking on the first table in the application. For example:

L ock contention ishigh for two tablesthat are updated in transactions
involving several tables. Applicationsfirst lock TableA, then attempt
to acquire locks on TableB, and block, holding locks on TableA.

Additional tasks running the same application block while trying to
acquire locks on TableA. Both tables show high contention and high
wait times.

Changing TableB to data-only locking may alleviate the contention on
both tables.

Contention for TableT is high, so itslocking schemeis changed to a
data-only locking scheme.

Re-running sp_object_stats now shows contention on TableX, which
had shown very little lock contention. The contention on TableX was
masked by the blocking problem on TableT.

If your application uses many tables, you may want to convert your set of
tables to data-only locking gradually, by changing just those tables with
the highest lock contention. Then test the results of these changes by
rerunning sp_object_stats.

You should run your usual performance monitoring tests both before and
after you make the changes.

Monitoring and managing tables after conversion

After you have converted one or more tablesin an application to a data-
only-locking scheme:

Check query plansand I/O statistics, especially for those queries that
use clustered indexes.

Monitor the tables to learn how changing the locking scheme affects:
» Thecluster ratios, especially for tables with clustered indexes

e The number of forwarded rowsin the table

233

Choosing the locking scheme for a tablel

Applications not likely to benefit from data-only locking

This section describes tables and application types that may get little
benefit from converting to data-only locking, or may require additional
management after the conversion.

Tables where clustered index performance must remain high

If queries with high performance requirements use clustered indexes to
return large numbers of rows in index order, you may see performance
degradation if you change these tables to use data-only locking. Clustered
indexes on data-only-locked tables are structurally the same as
nonclustered indexes.

Placement al gorithms keep newly inserted rows close to existing rows
with adjacent values, aslong as space is available on nearby pages.

Performancefor adata-only-locked table with aclustered index should be
close to the performance of the same table with allpages locking
immediately after a create clustered index command or areorg rebuild
command, but performance, especially with large 1/0, declines if cluster
ratios decline because of inserts and forwarded rows.

Performance remains high for tablesthat do not experience alot of inserts.
Ontablesthat get alot of inserts, a System Administrator may need to drop
and re-create the clustered index or run reorg rebuild more frequently.

Using space management properties such asfillfactor, exp_row_size, and
reservepagegap can help reduce the frequency of maintenance operations.
In some cases, using the allpages locking scheme for the table, even if
there is some contention, may provide better performance for queries
performing clustered index scans than using data-only locking for the
tables.

Tables with maximum-length rows

Data-only-locked tables require more overhead per page and per row than
allpages-locked tables, so the maximum row size for a data-only-locked
tableis dightly shorter than the maximum row size for an allpages-locked
table.

For tables with fixed-length columns only, the maximum row sizeis 1958
bytes of user data for data-only-locked tables. Allpages-locked tables
allow amaximum of 1960 bytes.

234

CHAPTER 10 Locking Configuration and Tuning

For tables with variable-length columns, subtract 2 bytes for each
variable-length column (thisincludes all columnsthat allow null values).
For example, the maximum user row size for adata-only-locked tablewith
4 variable-length columns is 1950 bytes.

If you try to convert an al pages-locked tabl ethat has more than 1958 bytes
in fixed-length columns, the command fails as soon as it reads the table
schema.

When you try to convert an all pages-locked table with variable-length
columns, and some rows exceed the maximum size for the data-only-
locked table, the alter table command fails at the first row that istoo long
to convert.

235

Choosing the locking scheme for a tablel

236

charTer 11 Using Locking Commands

This chapter discusses the types of locks used in Adaptive Server and the

commands that can affect locking.

Topic Topic
Specifying the locking scheme for atable 237
Controlling isolation levels 243
Readpast locking 248
Cursors and locking 248
Additiona locking commands 251

Specifying the locking scheme for a table

The locking schemes in Adaptive Server provide you with the flexibility
to choose the best locking scheme for each table in your application and
to adapt the locking scheme for atable if contention or performance

requires a change. The tools for specifying locking schemes are:

e sp_configure, to specify a server-wide default locking scheme

e create table to specify the locking scheme for newly created tables

e alter table to change the locking scheme for atable to any other

locking scheme

e select into to specify the locking scheme for atable created by

selecting results from other tables

Specifying a server-wide locking scheme

Thelock scheme configuration parameter sets the locking scheme to be
used for any new table, if the create table command does not specify the

lock scheme.

To see the current locking scheme, use:

237

Specifying the locking scheme for a table

sp_configure "l ock schene"

Par amet er Name Def aul t Menmory Used Config Val ue Run Val ue

| ock schene al | pages 0 dat arows dat ar ows

The syntax for changing the locking schemeis:

sp_configure "lock scheme", 0,
{allpages | datapages | datarows}

This command sets the default lock scheme for the server to datapages:
sp_configure "lock schene", 0, datapages

When you first install Adaptive Server, lock scheme is set to allpages.

Specifying a locking scheme with create table

You can specify the locking scheme for a new table with the create table
command. The syntax is:

create table table_name (column_name_list)
[lock {datarows | datapages | allpages}]

If you do not specify thelock schemefor atable, the default valuefor your
server is used, as determined by the setting of the lock scheme
configuration parameter.

This command specifies datarows locking for the new_publishers table:

create tabl e new_publishers

(pub_id char (4) not null,
pub_nane varchar (40) null,
city varchar (20) null,
state char (2) nul)

| ock dat ar ows

Specifying the locking scheme with create table overrides the default
server-wide setting.

See “ Specifying a server-wide locking scheme” on page 237 for more
information.

238

CHAPTER 11 Using Locking Commands

Changing a locking scheme with alter table

Usethealter table command to change the locking schemefor atable. The
syntax is:

alter table table_name
lock {allpages | datapages | datarows}

This command changes the locking scheme for thetitles table to datarows
locking:

alter table titles | ock datarows

alter table supports changing from onelocking schemeto any other locking
scheme. Changing from allpages locking to data-only locking requires
copying the data rows to new pages and re-creating any indexes on the
table.

The operation takes several stepsand requires sufficient spaceto makethe
copy of thetable and indexes. Thetime required depends on the size of the
table and the number of indexes.

Changing from datapages locking to datarows locking or vice versa does
not require copying data pages and rebuilding indexes. Switching between
data-only locking schemes only updates system tables, and completesina
few seconds.

Note You cannot use data-only locking for tablesthat have rows that are
at, or near, the maximum length of 1962 (including the two bytes for the
offset table).

For data-only-locked tableswith only fixed-length columns, the maximum
user datarow sizeis 1960 bytes (including the 2 bytes for the offset table).

Tables with variable-length columns require 2 additional bytes for each
column that is variable-length (thisincludes columns that allow nulls.)

See Chapter 15, “Determining Sizes of Tables and Indexes,” for
information on rows and row overhead.

Before and after changing locking schemes

Before you change from allpages |ocking to data-only locking or vice
versa, the following steps are recommended:

239

Specifying the locking scheme for a table

After alter table completes

240

If the table is partitioned, and update statistics has not been run since
major datamodificationsto thetable, run update statistics on the table
that you plan to alter. alter table...lock performs better with accurate
statistics for partitioned tables.

Changing the locking scheme does not affect the distribution of data
on partitions; rowsin partition 1 are copied to partition 1 in the copy
of thetable.

Perform a database dump.

Set any space management properties that should be applied to the
copy of the table or its rebuilt indexes.

See Chapter 13, “ Setting Space Management Properties,” for more
information.

Determine if there is enough space.

See “ Determining the space avail able for maintenance activities’ on
page 370.

If any of the tables in the database are partitioned and require a
paralle sort:

e Usesp_dboption to set the database option
select into/bulkcopy/plisort to true and run checkpoint in the
database.

e Setyour configuration for optimum parallel sort performance.

Run dbcc checktable on the table and dbcc checkalloc on the database
to insure database consistency.

Perform a database dump.

Note After you have changed the locking scheme from allpages
locking to data-only locking or vice versa, you cannot use the dump
transaction to back up the transaction log.

You must first perform a full database dump.

CHAPTER 11 Using Locking Commands

Expense of switching to or from allpages locking

Switching from allpages locking to data-only locking or vice versais an
expensive operation, in terms of 1/O cost. The amount of time required
depends on the size of the table and the number of indexes that must be re-
created. Most of the cost comes from the /O required to copy the tables
and re-create the indexes. Some logging is also required.

The alter table...lock command performs the following actions when
moving from allpages locking to data-only locking or from data-only
locking to allpages locking:

e Copiesal rowsin the table to new data pages, formatting rows
according to the new format. If you are changing to data-only locking,
any datarows of lessthan 10 bytes are padded to 10 bytes during this
step. If you are changing to allpages locking from data-only locking,
extrapadding is stripped from rows of lessthan 10 bytes.

¢ Dropsand re-creates all indexes on the table.
¢ Deéletestheold set of table pages.
¢ Updates the system tables to indicate the new locking scheme.

e Updatesacounter maintained for thetable, to cause the recompilation
of query plans.

If aclustered index exists on the table, rows are copied in clustered index
key order onto the new data pages. If no clustered index exists, the rows
are copied in page-chain order for an allpages-locking to data-only-
locking conversion.

The entire alter table...lock command is performed as a single transaction
to ensure recoverability. An exclusivetablelock isheld on thetable for the
duration of the transaction.

Switching from datapages |ocking to datarows locking or vice versa does
not require that you copy pages or re-create indexes. It updates only the
system tables. You are not required to set sp_dboption "select
into/bulkcopy/plisort".

241

Specifying the locking scheme for a table

Sort performance during alter table

If the table being altered is partitioned, parallel sorting can be used while
rebuilding the indexes. alter table performance can be greatly improved if
the data cache and server are configured for optimal parallel sort
performance.

During alter table, the indexes are re-created one at atime. If your system
has enough engines, data cache, and /O throughput to handle
simultaneous create index operations, you can reduce the overall time
required to change locking schemes by:

« Droping the nonclustered indexes
e Altering the locking scheme
e Configuring for best parallel sort performance

e Re-creating two or more nonclustered indexes at once

Specifying a locking scheme with select into

242

You can specify alocking scheme when you create a new table, using the
select into command. The syntax is:

select [all | distinct] select_list
into [[database.]Jowner.]table_name
lock {datarows | datapages | allpages}

from ...

If you do not specify alocking scheme with select into, the new table uses
the server-wide default locking scheme, as defined by the configuration
parameter lock scheme.

This command specifies datarows locking for the table it creates:

select title_id, title, price
into bus titles

| ock dat ar ows

fromtitles

where type = "busi ness"

Temporary tables created with the #tablename form of naming are single-
user tables, so lock contention is not an issue. For temporary tables that
can be shared among multiple users, that is, tables created with
tempdb..tablename, any locking scheme can be used.

CHAPTER 11 Using Locking Commands

Controlling isolation levels

You can set the transaction isolation level used by select commands:

» For al queriesin the session, with the set transaction isolation level
command

* Foranindividua query, with the at isolation clause

» For specifictablesinaquery, with the holdlock, noholdlock, and shared
keywords

When choosing locking levelsin your applications, use the minimum
locking level that isconsistent with your business model. The combination
of setting the session level while providing control over locking behavior
at the query level allows concurrent transactionsto achieve the resultsthat
are required with the least blocking.

Note If you use transaction isolation level 2 (repeatable reads) on
allpages-locked tables, isolation level 3 (serializing reads) is also
enforced.

For more information on isolation levels, see the System Administration
Guide.

Setting isolation levels for a session

The SQL standard specifies a default isolation level of 3. To enforce this
level, Transact-SQL provides the set transaction isolation level command.
For example, you can make level 3 the default isolation level for your
session asfollows:

set transaction isolation |evel 3

If the session has enforced isolation level 3, you can make the query
operate at level 1 using noholdlock, as described below.

If you are using the Adaptive Server default isolation level of 1, or if you
have used the set transaction isolation level command to specify level 0 or
2, you can enforcelevel 3 by using the holdlock option to hold shared locks
until the end of atransaction.

The current isolation level for a session can be determined with the global
variable @@isolation.

243

Controlling isolation levels

Syntax for query-level and table-level locking options

The holdlock, noholdlock, and shared options can be specified for each
tablein aselect statement, with the at isolation clause applied to the entire

query.

select select_list
from table_name [holdlock | noholdlock] [shared]
[, table_name [[holdlock | noholdlock] [shared]
{where/group by/order by/compute clauses}
[at isolation {
[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3]]

Here is the syntax for the readtext command:

readtext [[database.]Jowner.]table_name.column_name
text_pointer offset size
[holdlock | noholdlock] [readpast]
[using {bytes | chars | characters}]
[at isolation {
[read uncommitted | 0] |
[read committed | 1] |
[repeatable read | 2]|
[serializable | 3]}]

Using holdlock, noholdlock, or shared

You can override a session’s locking level by applying the holdlock,
noholdlock, and shared optionsto individual tablesin select or readtext

commands:

Level to use Keyword Effect

1 noholdlock Do not hold locks until the end of the
transaction; use from level 3 to enforce
level 1

2,3 holdlock Hold shared locks until the transaction
completes; use from level 1 to enforce
level 3

N/A shared Applies shared rather than update locks
for select statementsin cursors open for
update

These keywords affect locking for the transaction: if you use holdlock, al
locks are held until the end of the transaction.

244

CHAPTER 11 Using Locking Commands

If you specify holdlock in aquery whileisolation level Oisin effect for the
session, Adaptive Server issues awarning and ignores the holdlock clause,
not acquiring locks as the query executes.

If you specify holdlock and read uncommitted, Adaptive Server prints an
error message, and the query is not executed.

Using the at isolation clause

You can change the isolation level for al tablesin the query by using the
atisolation clause with aselect or readtext command. The optionsin the at
isolation clause are:

Level to use Option Effect
0 read Reads uncommitted changes; use from
uncommitted level 1, 2, or 3 queriesto perform dirty
reads (level 0).
1 read committed Reads only committed changes; wait

for locks to be released; use from level
0 to read only committed changes, but
without holding locks.

2 repeatable read Holds shared locks until the transaction
completes; use from level O or level 1
queriesto enforce level 2.

3 serializable Holds shared locks until the transaction
completes; use from level 1 or level 2
queriesto enforce level 3.

For example, the following statement queries the titles table at isolation
level O:

sel ect *
fromtitles
at isolation read uncommtted

For more information about the transaction isolation level option and the at
isolation clause, see the Transact-SQL User’s Guide.

245

Controlling isolation levels

Making locks more restrictive

246

If isolation level 1 issufficient for most of your work, but some queries
require higher levels of isolation, you can selectively enforce the higher
isolation level using clausesin the select statement:

* Userepeatable read to enforce level 2
e Useholdlock or at isolation serializable to enforce level 3

The holdlock keyword makes a shared page or table lock more restrictive.
It applies:

* Toshared locks

e Tothetableor view for whichiit is specified

« For the duration of the statement or transaction containing the
statement

Theat isolation clause appliesto all tablesin thefrom clause, and is applied
only for the duration of the transaction. The locks are released when the
transaction compl etes.

In atransaction, holdlock instructs Adaptive Server to hold shared locks
until the completion of that transaction instead of releasing the lock as
soon as the required table, view, or data page is no longer needed.
Adaptive Server always holds exclusive locks until the end of a
transaction.

The use of holdlock in the following example ensures that the two queries
return consistent results:

begi n transaction
sel ect branch, sun{bal ance)
from account hol dl ock
group by branch
sel ect sun{bal ance) from account
conmit transaction

Thefirst query acquires a shared table lock on account so that no other
transaction can update the data before the second query runs. Thislock is
not released until the transaction including the holdlock command

compl etes.

CHAPTER 11 Using Locking Commands

Using read committed

If your session isolation level is 0, and you need to read only committed
changes to the database, you can use the at isolation level read committed
clause.

Making locks less restrictive

In contrast to holdlock, the noholdlock keyword prevents Adaptive Server
from holding any shared locks acquired during the execution of the query,
regardless of the transaction isolation level currently in effect.

noholdlock isuseful in situations where your transactions require a default
isolation level of 2 or 3. If any queriesin those transactions do not need to
hold shared locks until the end of the transaction, you can specify
noholdlock with those queries to improve concurrency.

For example, if your transaction isolation level is set to 3, which would
normally cause aselect query to hold locks until the end of thetransaction,
this command rel eases the locks when the scan moves off the page or row:

sel ect bal ance from account nohol dl ock
where acct _nunber < 100

Using read uncommitted

Using shared

If your session isolation level is 1, 2, or 3, and you want to perform dirty
reads, you can use the at isolation level read uncommitted clause.

The shared keyword instructs Adaptive Server to use a shared lock
(instead of an update lock) on a specified table or view in a cursor.

See “Using the shared keyword” on page 249 for more information.

247

Readpast locking

Readpast locking

Readpast locking allows select and readtext queries to silently skip al
rows or pages locked with incompatible locks. The queries do not block,
terminate, or return error or advisory messages to the user. It islargely
designed to be used in queue-processing applications.

In general, these applicationsallow queriesto return thefirst unlocked row
that meets query qualifications. An example might be an application
tracking callsfor service: the query needsto find the row with the earliest
timestamp that is not locked by another repair representative.

For more information on readpast locking, see the Transact-SQL User’s
Guide.

Cursors and locking

248

Cursor locking methods are similar to the other locking methods in
Adaptive Server. For cursors declared asread only or declared without the
for update clause, Adaptive Server usesashared pagelock on the data page
that includes the current cursor position.

When additional rowsfor the cursor are fetched, Adaptive Server acquires
alock on the next page, the cursor position is moved to that page, and the
previous page lock is released (unless you are operating at isolation level
3).

For cursors declared with for update, Adaptive Server uses update page
locks by default when scanning tables or views referenced with the for
update clause of the cursor.

If the for update list is empty, all tables and views referenced in the from
clause of the select statement receive update locks. An update lock is a
special type of read lock that indicatesthat the reader may modify the data
soon. An update lock allows other shared locks on the page, but does not
allow other update or exclusive locks.

If arow isupdated or deleted through a cursor, the data modification
transaction acquires an exclusive lock. Any exclusive locks acquired by
updates through a cursor in a transaction are held until the end of that
transaction and are not affected by closing the cursor.

CHAPTER 11 Using Locking Commands

Thisisalso true of shared or update locks for cursors that use the holdlock
keyword or isolation level 3.

Thefollowing describes the locking behavior for cursors at each isolation
level:

e Atlevel 0, Adaptive Server uses no locks on any base table page that
containsarow representing acurrent cursor position. Cursorsacquire
no read locks for their scans, so they do not block other applications
from accessing the same data.

However, cursors operating at this isolation level are not updatable,
and they require a unique index on the base table to ensure accuracy.

e Atlevel 1, Adaptive Server uses shared or update locks on base table
or leaf-level index pages that contain arow representing a current
cursor position.

The page remains locked until the current cursor position moves off
the page as aresult of fetch statements.

e Atlevel 2 or 3, Adaptive Server uses shared or update locks on any
base table or leaf-level index pages that have beenread ina
transaction through the cursor.

Adaptive Server holdsthelocks until the transaction ends; it does not
release the locks when the data page is no longer needed or when the
cursor is closed.

If you do not set the close on endtran or chained options, a cursor remains
open past the end of the transaction, and its current page locks remain in
effect. It may also continue to acquire locks as it fetches additional rows.

Using the shared keyword

When declaring an updatable cursor using the for update clause, you can
tell Adaptive Server to use shared page locks (instead of update page
locks) in the declare cursor statement:

declare cursor_name cursor
for select select_list
from {table_name | view_name} shared
for update [of column_name_list]

This allows other users to obtain an update lock on the table or an
underlying table of the view.

249

Cursors and locking

250

You can use the holdlock keyword in conjunction with shared after each
table or view name. holdlock must precede shared in the select statement.
For example:

decl are aut hors_crsr cursor

for select au_id, au_l name, au_fnane
from aut hors hol dl ock shared
where state !'="'"CA
for update of au_l name, au_fnane

These are the effects of specifying the holdlock or shared options when
defining an updatable cursor:

If you do not specify either option, the cursor holds an update lock on
the row or on the page containing the current row.

Other users cannot update, through a cursor or otherwise, the row at
the cursor position (for datarows-locked tables) or any row on this
page (for allpages and datapages-locked tables).

Other users can declare a cursor on the same tables you use for your
cursor, and can read data, but they cannot get an update or exclusive
lock on your current row or page.

If you specify the shared option, the cursor holds a shared lock on the
current row or on the page containing the currently fetched row.

Other users cannot update, through a cursor or otherwise, the current
row, or therows onthispage. They can, however, read therow or rows
on the page.

If you specify the holdlock option, you hold update locks on all the
rows or pages that have been fetched (if transactions are not being
used) or only the pages fetched since thelast commit or rollback (if in
atransaction).

Other users cannot update, through a cursor or otherwise, currently
fetched rows or pages.

Other users can declare a cursor on the same tables you use for your
cursor, but they cannot get an update lock on currently fetched rows

or pages.
If you specify both options, the cursor holds shared locks on al the

rows or pages fetched (if not using transactions) or on the rows or
pages fetched since the last commit or rollback.

Other users cannot update, through a cursor or otherwise, currently
fetched rows or pages.

CHAPTER 11 Using Locking Commands

Additional locking commands

lock table Command

Lock timeouts

In transactions, you can explicitly lock atable with the lock table
command.

» Toimmediately lock the entire table, rather than waiting for lock
promotion to take effect.

* When the query or transactions uses multiple scans, and none of the
scans locks a sufficient number of pages or rows to trigger lock
promotion, but the total number of locksis very large.

* Whenlargetables, especially those using datarowslocking, need to be
accessed at transaction level 2 or 3, and lock promotionislikely to be
blocked by other tasks. Using lock table can prevent running out of
locks.

The table locks are released at the end of the transaction.

lock table allows you to specify await period. If the table lock cannot be
granted within the wait period, an error message is printed, but the
transaction is not rolled back.

See lock table in the Adaptive Server Reference Manual for an example of
a stored procedure that uses lock time-outs, and checks for an error
message. The procedure continuesto execute if it was run by the System
Administrator, and returns an error message to other users.

You can specify the time that atask waits for alock:

e Attheserver level, with the lock wait period configuration parameter
e Forasessionor inastored procedure, with the set lock wait command
e For alock table command

See the Transact-SQL Users' Guide for more information on these
commands.

251

Additional locking commands

252

Except for lock table, atask that attempts to acquire alock and failsto
acquire it within the time period returns an error message and the
transaction is rolled back.

Using lock time-outs can be useful for removing tasks that acquire some
locks, and then wait for long periods of time blocking other users.
However, since transactions are rolled back, and users may simply
resubmit their queries, timing out atransaction means that the work needs
to be repeated.

You can use sp_sysmon to monitor the number of tasks that exceed the
time limit while waiting for alock.

See “Lock time-out information” on page 973.

CHAPTER 12

Locking tools

Reporting on Locks

This chapter discussesthe tool s that report on locks and locking behavior.

Topic Page
Locking tools 253
Deadlocks and concurrency 258
Identifying tables where concurrency is a problem 264
L ock management reporting 266

sp_who, sp_lock, and sp_familylock report on locks held by users, and show
processes that are blocked by other transactions.

Getting information about blocked processes

sp_who reportson system processes. If auser’scommand isbeing blocked
by locks held by another task or worker process, the status column shows
“lock deep” to indicate that this task or worker process iswaiting for an
existing lock to be released.

The blk_spid or block_xloid column shows the process ID of the task or
transaction holding the lock or locks.

You can add a user name parameter to get sp_who information about a
particular Adaptive Server user. If you do not provide auser name, sp_who
reports on all processes in Adaptive Server.

Note The sample output for sp_lock and sp_familylock in this chapter
omits the class column to increase readability. The class column reports
either the names of cursorsthat hold locks or “Non Cursor Lock.”

253

Locking tools

Viewing locks
To get areport on the locks currently being held on Adaptive Server, use

sp_lock:
sp_l ock
fid spid loid | ocktype table_id page row dbnane cont ext
0 15 30 Ex_intent 208003772 0 0 sal es Fam dur
0 15 30 Ex_page 208003772 2400 0 sales Fam dur, Ind pg
0 15 30 Ex_page 208003772 2404 0 sales Fam dur, Ind pg
0 15 30 Ex_page-bl k 208003772 946 0 sales Fam dur
0 30 60 Ex_intent 208003772 0 0 sales Fam dur
0 30 60 Ex_page 208003772 997 0 sales Fam dur
0 30 60 Ex_page 208003772 2405 0 sales Fam dur, Ind pg
0 30 60 Ex_page 208003772 2406 0 sales Fam dur, Ind pg
0 35 70 Sh_intent 16003088 0 0 sal es Fam dur
0 35 70 Sh_page 16003088 1096 0 sales Fam dur, |nf key
0 35 70 Sh_page 16003088 3102 0 sales Fam dur, Range
0 35 70 Sh_page 16003088 3113 0 sales Fam dur, Range
0 35 70 Sh_page 16003088 3365 0 sales Fam dur, Range
0 35 70 Sh_page 16003088 3604 0 sales Fam dur, Range
0 49 98 Sh_intent 464004684 0 0 master Fam dur
0 50 100 Ex_intent 176003658 0 0 stock Fam dur
0 50 100 Ex_row 176003658 36773 8 stock Fam dur
0 50 100 Ex_intent 208003772 0 0 stock Fam dur
0 50 100 Ex_row 208003772 70483 1 stock Fam dur
0 50 100 Ex_row 208003772 70483 2 stock Fam dur
0 50 100 Ex_row 208003772 70483 3 stock Fam dur
0 50 100 Ex_row 208003772 70483 5 stock Fam dur
0 50 100 Ex_row 208003772 70483 8 stock Fam dur
0 50 100 Ex_row 208003772 70483 9 stock Fam dur
32 13 64 Sh_page 240003886 17264 0 stock
32 16 64 Sh_page 240003886 4376 0 stock
32 17 64 Sh_page 240003886 7207 0 stock
32 18 64 Sh_page 240003886 12766 0 stock
32 18 64 Sh_page 240003886 12767 0 stock
32 18 64 Sh_page 240003886 12808 0 stock
32 19 64 Sh_page 240003886 22367 0 stock
32 32 64 Sh_intent 16003088 0 0 stock Fam dur
32 32 64 Sh_intent 48003202 0 0 stock Fam dur
32 32 64 Sh_intent 80003316 0 0 stock Fam dur
32 32 64 Sh_intent 112003430 0 0 stock Fam dur
32 32 64 Sh_intent 176003658 0 0 stock Fam dur
32 32 64 Sh_intent 208003772 0 0 stock Fam dur
32 32 64 Sh_intent 240003886 0 0 stock Fam dur

254

CHAPTER 12 Reporting on Locks

This example shows the lock status of serial processes and two parallel
processes.

e spid 15 hold an exclusive intent lock on atable, one data page lock,
and two index page locks. A “blk” suffix indicatesthat this processis
blocking another process that needs to acquire alock; spid 15 is
blocking another process. As soon asthe blocking process compl etes,
the other processes move forward.

¢ spid 30 holds an exclusive intent lock on atable, one lock on adata
page, and two locks on index pages.

« spid 35isperforming arange query at isolation level 3. It holdsrange
locks on several pages and an infinity key lock.

e spid 49 isthetask that ran sp_lock; it holds ashared intent lock on the
spt_values table in master whileit runs.

¢ spid 50 holds intent locks on two tables, and several row locks.

e fid 32 shows severa spids holding locks: the parent process (spid 32)
holds shared intent locks on 7 tables, while the worker processes hold
shared page locks on one of the tables.

Thelock type column indicates not only whether the lock is a shared lock
(“Sh” prefix), an exclusive lock (“Ex” prefix), or an “Update” lock, but
also whether it isheld on atable (“table” or “intent”) or on a“page” or
“row.”

A “demand” suffix indicatesthat the processwill acquirean exclusivelock
as soon as all current shared locks are rel eased.

See the System Administration Guide for more information on demand
locks.

The context column consists of one or more of the following values:

e “Famdur” means that the task will hold the lock until the query
completes, that is, for the duration of the family of worker processes.
Shared intent locks are an example of Fam dur locks.

For aparallel query, the coordinating process always acquires a
shared intent table lock that is held for the duration of the parallel
query. If the parallel query is part of atransaction, and earlier
statements in the transaction performed data modifications, the
coordinating processholdsfamily duration lockson all of the changed
data pages.

255

Locking tools

fid spid loid | ocktype

0

0
0
0

fid spid loid | ocktype

0

[eNeoNeoNeoNoNoNo

30
30
30
30

15
15
15
15
30
30
30
30

60
60
60
60

30
30
30
30
60
60
60
60

Worker processes can hold family duration locks when the query

operates at isolation level 3.

e “Indpg” indicates|ocks onindex pages (allpages-locked tables only).

e “Inf key” indicates an infinity key lock, used on data-only-locked
tables for some range queries at transaction isolation level 3.

e “Range’ indicates arange lock, used for some range queries at

transaction isolation level 3.

To see lock information about a particular login, give the spid for the

process:
sp_l ock 30
table_id
Ex_i nt ent 208003772
Ex_page 208003772
Ex_page 208003772
Ex_page 208003772

page

997
2405
2406

row

dbnane

cont ext

Fam dur
Fam dur
Fam dur,
Fam dur,

I nd pg
I nd pg

If the spid you specify is also the fid for afamily of processes, sp_who
prints information for all of the processes.

You can also request information about |ocks on two spids:

sp_lock 30, 15

table id
Ex_i ntent 208003772
Ex_page 208003772
Ex_page 208003772
Ex_page- bl k 208003772
Ex_i nt ent 208003772
Ex_page 208003772
Ex_page 208003772
Ex_page 208003772

Viewing locks

256

page

row

[cNeoNoNoNoNoNeNe]

dbnane

cont ext

Fam dur
Fam dur,
Fam dur,
Fam dur
Fam dur
Fam dur
Fam dur,
Fam dur,

Ind pg
I nd pg

Ind pg
I nd pg

sp_familylock displays the locks held by a family. This examples shows
that the coordinating process (fid 51, spid 51) holds a shared intent lock on
each of four tables and aworker process holds a shared page lock:

CHAPTER 12 Reporting on Locks

sp_fam lylock 51

fid spid loid | ocktype table_id page row dbnane cont ext
51 23 102 Sh_page 208003772 945 0 sal es
51 51 102 Sh_intent 16003088 0 0 sal es Fam dur
51 51 102 Sh_intent 48003202 0 0 sales Fam dur
51 51 102 Sh_intent 176003658 0 0 sales Fam dur
51 51 102 Sh_intent 208003772 0 0 sales Fam dur

You can aso specify two IDs for sp_familylock.

Intrafamily blocking during network buffer merges

When many worker processes are returning query results, you may see
blocking between worker processes. This example shows five worker
processes blocking on the sixth worker process:

sp_who 11
fid spid status | ogi nane ori gname hostnanme bl k dbnane cnd
11 11 sl eeping di ana di ana olynmpus O sal es SELECT
11 16 | ock sl eep diana di ana ol ympus 18 sales WORKER PROCESS
11 17 | ock sl eep diana di ana olympus 18 sales WORKER PROCESS
11 18 send sl eep diana di ana olynmpus O sal es WORKER PROCESS
11 19 | ock sl eep diana di ana olynmpus 18 sales WORKER PROCESS
11 20 I ock sl eep diana di ana olynmpus 18 sales WORKER PROCESS
11 21 | ock sl eep diana di ana olynmpus 18 sales WORKER PROCESS

Each worker process acquires an exclusive address lock on the network
buffer while writing results to it. When the buffer isfull, it is sent to the
client, and the lock is held until the network write completes.

257

Deadlocks and concurrency

Deadlocks and concurrency

Simply stated, a deadlock occurs when two user processes each have a
lock on aseparate data page, index page, or table and each wantsto acquire
alock on same page or table locked by the other process. When this
happens, thefirst processiswaiting for the second release the lock, but the
second processwill not releaseit until thelock on thefirst process's object
isreleased.

Server-side versus application-side deadlocks

When tasksdeadlock in Adaptive Server, adeadl ock detection mechanism
rolls back one of the transactions, and sends messages to the user and to
the Adaptive Server error log. It is possible to induce application-side
deadlock situationsin which a client opens multiple connections, and
these client connections wait for locks held by the other connection of the
same application.

These are not true server-side deadlocks and cannot be detected by
Adaptive Server deadlock detection mechanisms.

Application deadlock example

258

Some devel opers simulate cursors by using two or more connections from
DB-Library ™. One connection performs asel ect and the other connection
performs updates or del etes on the sametables. Thiscan create application
deadlocks. For example:

e Connection A holdsasharedlock on apage. Aslong astherearerows
pending from Adaptive Server, ashared lock is kept on the current
page.

e Connection B requests an exclusive lock on the same pages and then
waits.

e The application waits for Connection B to succeed before invoking
the logic needed to remove the shared lock. But this never happens.

Since Connection A never requests alock that is held by Connection B,
thisis not a server-side deadl ock.

CHAPTER 12 Reporting on Locks

Server task deadlocks
Below is an example of adeadlock between two processes.

T19 Event sequence T20
begi n transaction T19 and T20 start. begi n transaction
updat e savings T19getsexclusivelock
set bal ance = bal ance - 250 on savings while T20
wher e acct_number = 25 getse?(clusivelockon update checki ng
checking. set bal ance = bal ance - 75

wher e acct_number = 45

update checking T19 waits for T20 to

jﬁ;rgagigen;ngzlr a2c25+ 250 releaseits lock while
- T20 waitsfor T19 to

releaseitslock;

comit transaction
deadlock occurs.

updat e savi ngs
set bal ance = bal ance + 75
wher e acct_number = 25

comrit transaction

If transactions T19 and T20 execute simultaneously, and both transactions
acquire exclusivelockswith their initial update statements, they deadlock,
waiting for each other to release their locks, which will not happen.

Adaptive Server checks for deadlocks and chooses the user whose
transaction has accumul ated the least amount of CPU time as the victim.

Adaptive Server rolls back that user’s transaction, notifies the application
program of this action with message number 1205, and allows the other
process to move forward.

The example above shows two data modification statements that
deadlock; deadlocks can also occur between a process holding and
needing shared locks, and one holding and needing exclusive locks.

In amultiuser situation, each application program should check every
transaction that modifies data for message 1205 if there is any chance of
deadlocking. It indicates that the user transaction was selected as the
victim of adeadlock and rolled back. The application program must restart
that transaction.

259

Deadlocks and concurrency

Deadlocks and parallel queries

260

Worker processes can acquire only shared locks, but they can still be
involved in deadlocks with processes that acquire exclusive locks. The
locks they hold meet one or more of these conditions:

e A coordinating process holds a table lock as part of aparallel query.

The coordinating process could hold exclusive locks on other tables
as part of a previous query in atransaction.

e A pardléel query isrunning at transaction isolation level 3 or using
holdlock and holds locks.

e A paralée query isjoining two or more tables while another process
is performing a sequence of updates to the same tables within a
transaction.

A single worker process can be involved in a deadlock such as those
between two serial processes. For example, aworker processthat is
performing ajoin between two tables can deadlock with a serial process
that is updating the same two tables.

In some cases, deadlocks between serial processes and familiesinvolve a
level of indirection.

For example, if atask holds an exclusive lock on tableA and needs alock
on tableB, but aworker process holds afamily-duration lock on tableB, the
task must wait until the transaction that the worker processisinvolvedin
completes.

If another worker process in the same family needs alock on tableA, the
result is a deadlock. Figure 12-1 illustrates the following deadlock
scenario:

e Thefamily identified by fid 8 is doing aparallel query that involvesa
join of stock_thl and sales_tbl, at transaction level 3.

e Theseria task identified by spid 17 (T17) is performing inserts to
stock_tbl and sales_tbl in a transaction.

These are the steps that lead to the deadl ock:

e W89, aworker process with afid of 8 and aspid of 9, holds a shared
lock on page 10862 of stock_thl.

e T17 holds an exclusive lock on page 634 of sales_tbl. T17 needs an
exclusive lock on page 10862, which it cannot acquire until W8 9
releases its shared lock.

CHAPTER 12 Reporting on Locks

e Theworker process W8 10 needs a shared lock on page 634, which it
cannot acquire until T17 releases its exclusive lock.

Figure 12-1: A deadlock involving a family of worker processes

stock_tbl Shared
page
lock
97| Page 10862
.” Worker
(level 3) process
sales_thl Worker
E;;Lusive T process
lock Page634 (< Shared
intent
lock

Legend: —— Lock held by
- - - - I Needs lock

Printing deadlock information to the error log

Server-side deadl ocks are detected and reported to the application by
Adaptive Server andin the server’serror log. The error message sent to the
application is error 1205.

The message sent to the error log, by default, merely identifies that a
deadlock occurred. The numbering in the message indicates the number of
deadl ocks since the last boot of the server.

03: 00000: 00029: 1999/ 03/ 15 13:16:38.19 server Deadlock Id 11 detected

In this output, fid O, spid 29 started the deadlock detection check, so itsfid
and spid values are used as the second and third values in the deadlock
message. (The first value, 03, is the engine number.)

To get more information about the tasks that deadlock, set the print
deadlock information configuration parameter to 1. This setting sends more
detailed deadlock messages to the log and to the terminal session where
the server started.

261

Deadlocks and concurrency

However, setting print deadlock information to 1 can degrade Adaptive
Server performance. For thisreason, you should use it only when you are
trying to determine the cause of deadlocks.

The deadlock messages contain detailed information, including:
e Thefamily and server-process IDs of the tasksinvolved

e The commands and tablesinvolved in deadlocks; if a stored
procedure was involved, the procedure name is shown

« Thetype of locks each task held, and the type of lock each task was
trying to acquire

e Theserver login IDs (suid values)

In the following report, spid 29 is deadlocked with a parallel task, fid 94,
spid 38. The deadlock involves exclusive versus shared lock requests on
the authors table. spid 29 is chosen as the deadlock victim:

Deadl ock Id 11: detected. 1 deadl ock chain(s) involved.

Deadl ock Id 11: Process (Famlyid 94, 38) (suid 62) was executing a SELECT
conmmand at |ine 1.
Deadl ock Id 11: Process (Familyid 29, 29) (suid 56) was executing a | NSERT
command at |ine 1.
SQ Text: insert authors (au_id, au_fnane, au_l nane) val ues (' A999999816’,
"Bill’, 'Dewart’)

Deadl ock 1d 11: Process (Familyid 0, Spid 29) was waiting for a’exclusive page’
| ock on page 1155 of the "authors’ table in database 8 but process (Fanilyid
94, Spid 38) already held a 'shared page’ lock on it.

Deadl ock Id 11: Process (Famlyid 94, Spid 38) was waiting for a 'shared page’
| ock on page 2336 of the "authors’ table in database 8 but process (Fanilyid
29, Spid 29) already held a 'exclusive page’ lock on it.

Deadl ock Id 11: Process (Famlyid 0, 29) was chosen as the victim End of
deadl ock information.

Avoiding deadlocks

It ispossibleto encounter deadl ocks when many long-running transactions
are executed at the same time in the same database. Deadlocks become
more common asthelock contention i ncreases between those transactions,
which decreases concurrency.

262

CHAPTER 12 Reporting on Locks

Methods for reducing lock contention, such as changing the locking
scheme, avoiding table locks, and not holding shared locks, are described
in Chapter 10, “Locking Configuration and Tuning.”

Acquire locks on objects in the same order

Well-designed applications can minimize deadlocks by always acquiring
locks in the same order. Updates to multiple tables should always be
performed in the same order.

For example, the transactions described in Figure 12-1 could have avoided
their deadlock by updating either the savings or checking tablefirst in both
transactions. That way, one transaction gets the exclusive lock first and
proceeds while the other transaction waitsto receiveits exclusivelock on
the same table when the first transaction ends.

In applications with large numbers of tables and transactions that update
several tables, establish alocking order that can be shared by all
application devel opers.

Delaying deadlock checking

Adaptive Server performs deadlock checking after a minimum period of
time for any process waiting for alock to be released (deeping). This
deadlock checking is time-consuming overhead for applications that wait
without a deadlock.

If your applications deadlock infrequently, Adaptive Server can delay
deadlock checking and reduce the overhead cost. You can specify the
minimum amount of time (in milliseconds) that a process waits before it
initiates a deadlock check using the configuration parameter deadlock
checking period.

Valid values are 0—-2147483. The default value is 500. deadlock checking
period is a dynamic configuration value, so any changeto it takes
immediate effect.

If you set thevalueto 0, Adaptive Server initiates deadl ock checking when
the process beginsto wait for alock. If you set the val ue to 600, Adaptive
Server initiates a deadl ock check for the waiting process after at least 600
ms. For example:

sp_configure "deadl ock checking period", 600

263

Identifying tables where concurrency is a problem

Setting deadlock checking period to a higher value produces longer delays
before deadlocks are detected. However, since Adaptive Server grants
most lock requests before this time elapses, the deadlock checking
overhead is avoided for those lock requests.

Adaptive Server performs deadlock checking for all processes at fixed
intervals, determined by deadlock checking period. If Adaptive Server
performs a deadlock check while a process's deadlock checking is
delayed, the process waits until the next interval.

Therefore, aprocess may wait from the number of milliseconds set by
deadlock checking period to almost twice that value before deadlock
checking is performed. sp_sysmon can help you tune deadlock checking
behavior.

See “Deadlock detection” on page 971.

Identifying tables where concurrency is a problem

264

sp_object_stats prints table-level information about lock contention. You
can useit to:

* Report on all tables that have the highest contention level
* Report contention on tables in a single database
* Report contention on individual tables

The syntax is:

sp_object_stats interval [, top_n
[, dbname [, objname [, rpt_option]]]]

To measure lock contention on all tablesin all databases, specify only the
interval. This example monitors lock contention for 20 minutes, and
reports statistics on the ten tables with the highest levels of contention:

sp_obj ect _stats "00: 20: 00"
Additional arguments to sp_object_stats are as follows:

e top_n-—alowsyou to specify the number of tablesto be included in
the report. Remember, the default is 10. To report on the top 20 high-
contention tables, for example, use:

sp_obj ect _stats "00:20: 00", 20

CHAPTER 12 Reporting on Locks

oj ect Nane: pubtune..titles (dbid=7,

Page Locks

Wi ts:

Deadl ocks:
Wait-tine:
Cont ent i on:

*** Consi der

e dbname - prints statistics for the specified database.

¢ objname — measures contention for the specified table.

e rpt_option — specifies the report type:

e rpt_locks reports grants, waits, deadlocks, and wait times for the
tables with the highest contention. rpt_locks is the default.

e rpt_objlist reports only the names of the objects with the highest
level of lock activity.

Here is sample output for titles, which uses datapages locking:

20603764 s
0. 56%

obj i d=208003772, | ockschene=Dat apages)

UP_PAGE EX_PAGE
4052 4828
500 776
0 24
14265708 ns 2831556 ns
10. 98% 13. 79%

altering pubtune..titles to Datarows | ocking.

Table 12-1 shows the meaning of the values.

Table 12-1: sp_object_stats output

Output dow Value

Grants The number of timesthe lock was granted immediately.

Waits The number of times the task needing alock had to wait.

Deadlocks The number of deadlocks that occurred.

Wait-times The total number of milliseconds that all tasks spent
waiting for alock.

Contention The percentage of times that atask had to wait or

encountered a deadlock.

sp_object_stats recommends changing the locking scheme when total
contention on atable is more than 15 percent, as follows:

e |If thetable uses alpageslocking, it recommends changing to
datapages |ocking.

e If thetable uses datapages locking, it recommends changing to
datarows locking.

265

Lock management reporting

Lock management reporting

266

Output from sp_sysmon gives statistics on locking and deadl ocks
discussed in this chapter.

Use the statistics to determine whether the Adaptive Server system is
experiencing performance problems due to lock contention.

For more information about sp_sysmon and lock statistics, see “Lock
management” on page 964.

Use Adaptive Server Monitor to pinpoint locking problems.

CHAPTER 13

Setting Space Management
Properties

Setting space management properties can help reduce the amount of
maintenance work required to maintain high performance for tables and
indexes.

Topic Page
Reducing index maintenance 267
Reducing row forwarding 273
L eaving space for forwarded rows and inserts 279
Using max_rows_per_page on allpages-locked tables 287

Reducing index maintenance

By default, Adaptive Server createsindexesthat are completely full at the
leaf level and leaves growth room for two rows on the intermediate pages.

The fillfactor option for the create index command allows you to specify
how full to make index pages and the data pages of clustered indexes.
When you use fillfactor, except for afillfactor value of 100 percent, data
and index rows use more disk space than the default setting requires.

If you are creating indexesfor tablesthat will grow in size, you can reduce
the impact of page splitting on your tables and indexes by using the
fillfactor option for create index.

Thefillfactor is used only when you create the index; it is not maintained
over time.

When you issue create index, the fillfactor value specified as part of the
command is applied as follows:

e Clustered index:

» Onan alpages-locked table, the fillfactor is applied to the data
pages.

267

Reducing index maintenance

e Onadata-only-locked table, thefillfactor is applied to the | eaf
pages of the index, and the data pages are fully packed (unless
sp_chgattribute has been used to store afillfactor for the table).

Nonclustered index — thefillfactor valueis applied to the leaf pages of
the index.

fillfactor val ues specified with create index are applied at the time the index
iscreated. They are not saved in sysindexes, and the fullness of the dataor
index pagesis not maintained over time.

You can also use sp_chgattribute to store values for fillfactor that are used
when reorg rebuild is run on atable.

See “ Setting fillfactor values’ on page 269 for more information.

Advantages of using fillfactor

Setting fillfactor to alow value provides a temporary performance
enhancement. Its benefits fade as inserts to the database increase the
amount of space used on data or index pages.

A lower fillfactor provides these benefits:

It reduces page splits on the leaf-level of indexes, and the data pages
of alpages-locked tables.

It improves data-row clustering on data-only-locked tables with
clustered indexes that experience inserts.

It can reduce lock contention for tables that use page-level locking,
since it reduces the likelihood that two processes will need the same
data or index page simultaneously.

It can help maintain large I/O efficiency for the data pages and for the
leaf levels of nonclustered indexes, since page splits occur less
frequently. This means that eight pages on an extent are likely to be
sequential.

Disadvantages of using fillfactor

If you usefillfactor, especially avery low fillfactor, you may notice these
effects on queries and maintenance activities:

268

CHAPTER 13 Setting Space Management Properties

Setting fillfactor values

More pages must be read for each query that does atable scan or |eaf-
level scan on a nonclustered index.

In some cases, it may also add alevel to an index’s B-tree structure,
since there will be more pages at the data level and possibly more
pages at each index level.

dbcc commands need to check more pages, so docc commands take
more time.

dump database time increases, because more pages need to be
dumped. dump database copies all pagesthat store data, but does not
dump pages that are not yet in use.

Your dumpsand loads will take longer to complete and may use more
tapes.
Fillfactors fade away over time. If you use fillfactor to reduce the

performance impact of page splits, you need to monitor your system
and re-create indexes when page splitting beginsto hurt performance.

sp_chgattribute allowsyou to store afillfactor percentage for each index and
for thetable. Thefillfactor you set with sp_chgattribute is applied when you:

Run reorg rebuild to restore the cluster ratios of data-only-locked
tables and indexes.

Use alter table...lock to change the locking scheme for atable or you
use an alter table...add/modify command that requires copying the
table.

Run create clustered index and there is avalue stored for the table.

The stored fillfactor is hot applied when nonclustered indexes are rebuilt as
aresult of acreate clustered index command:

If afillfactor valueis specified with create clustered index, that valueis
applied to each nonclustered index.

If nofillfactor valueis specified with create clustered index, the server-
wide default value (set with the default fill factor percent configuration
parameter) is applied to all indexes.

269

Reducing index maintenance

fillfactor examples

The following examples show the application of fillfactor values.

No stored fillfactor values

With no fillfactor values stored in sysindexes, thefillfactor specified in
commands “ create index” are applied as shown in Table 13-1.

create clustered index title id ix
ontitles (title_id)
with fillfactor = 80

Table 13-1: fillfactor values applied with no table-level saved value

Command Allpages-locked table Data-only-locked table
create clustered Data pages. 80 Data pages: fully packed
index Leaf pages: 80
Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80

The nonclustered indexes use the fillfactor specified in the create clustered
index command.

If no fillfactor is specified in create clustered index, the nonclustered
indexes always use the server-wide default; they never use avalue from
sysindexes.

Values used for alter table...lock and reorg rebuild

When no fillfactor values are stored, both alter table...lock and reorg rebuild
apply the server-wide default value, set by the default fill factor percentage
configuration parameter. The default fillfactor is applied as shown in Table

13-2.
Table 13-2: fillfactor values applied with during rebuilds
Command Allpages-locked table Data-only-locked table
Clustered index rebuild Data pages:. default value Data pages: fully packed
Leaf pages: default value
Nonclustered index rebuilds Leaf pages: default Leaf pages: default

Table-level or clustered index fillfactor value stored
This command stores afillfactor value of 50 for the table:

sp_chgattribute titles, "fillfactor", 50

270

CHAPTER 13 Setting Space Management Properties

With 50 as the stored table-level value for fillfactor, the following create
clustered index command applies thefillfactor values shown in Table 13-3.

create clustered index title_id_ix
on titles (title_id)
with fillfactor = 80

Table 13-3: Using stored fillfactor values for clustered indexes

Command Allpages-Locked Table Data-Only-Locked Table
create clustered index Data pages: 80 Data pages. 50

Leaf pages: 80
Nonclustered index rebuilds Leaf pages: 80 Leaf pages: 80

Note When acreate clustered index command is run, any table-level
fillfactor value stored in sysindexes is reset to 0.

To affect thefilling of data-only-locked data pages during a create
clustered index or reorg command, you must first issue sp_chgattribute.

Effects of alter table...lock when values are stored

Stored values for fillfactor are used when an alter table...lock command
copies tables and rebuilds indexes.

Tables with clustered indexes

In an allpages-locked table, the table and the clustered index share the
sysindexes row, so only one value for fillfactor can be stored and used for
the table and clustered index. You can set the fillfactor value for the data
pages by providing either the table name or the clustered index name. This
command saves the value 50:

sp_chgattribute titles, "fillfactor", 50

This command saves the value 80, overwriting the value of 50 set by the
previous command:

sp_chgattribute "titles.clust_ix", "fillfactor", 80

If you alter thetitles table to use data-only locking after issuing the
sp_chgattribute commands above, the stored val uefilifactor of 80 isused for
both the data pages and the leaf pages of the clustered index.

271

Reducing index maintenance

In adata-only-locked table, information about the clustered index is stored
inaseparaterow in sysindexes. Thefillfactor value you specify for thetable
appliesto the data pages and the fillfactor value you specify for the
clustered index applies to the leaf level of the clustered index.

When a data-only-locked table is altered to use allpages |ocking, the
fillfactor stored for the table is used for the data pages. The fillfactor stored
for the clustered index is ignored.

Table 13-4 shows the fillfactors used on data and index pages by an alter
table...lock command, executed after the sp_chgattribute commands above
have been run.

Table 13-4: Effects of stored fillfactor values during alter table

alter table...lock No clustered index Clustered index
From allpages locking to Data pages: 80 Data pages. 80
data-only locking Leaf pages: 80
From data-only locking to Data pages: 80 Data pages. 80
allpages locking

Note alter table...lock sets all stored fillfactor values for atable to O.

fillfactor values stored for nonclustered indexes
Each nonclustered index is represented by a separate sysindexes row.
These commands store different values for two nonclustered indexes:

sp_chgattribute "titles.ncl _ix", "fillfactor", 90
sp_chgattribute "titles.pubid_ix", "fillfactor", 75

Table 13-5 shows the effects of areorg rebuild command on a data-only-
locked table when the sp_chgattribute commands above are used to store
fillfactor values.

Table 13-5: Effect of stored fillfactor values during reorg rebuild

reorg rebuild No clustered index Clustered index Nonclustered indexes
Data-only-locked table Data pages: 80 Data pages. 50 ncl_ix leaf pages: 90
Leaf pages: 80 pubid_ix leaf pages: 75

272

CHAPTER 13 Setting Space Management Properties

Use of the sorted_data and fillfactor options

The sorted_data option for create index is used when the data to be sorted
isaready in order by theindex key. This allows create clustered index to
skip the copy step while creating a clustered index.

For example, if datathat isbulk copied into atable isaready in order by
the clustered index key, creating an index with the sorted_data option
creates theindex without performing asort. If the data does not need to be
copied to new pages, thefillfactor is not applied. However, the use of other
create index options might still require copying.

For moreinformation, see Creating an index on sorted data’ on page 359.

Reducing row forwarding

Specifying an expected row size for a data-only-locked table is useful
when an application allows rows that contain null values or short variable-
length character fields to be inserted, and these rows grow in length with
subsequent updates. The major purpose of setting an expected row sizeis
to reduce row forwarding.

For example, the titles table in the pubs2 database has many varchar
columns and columns that allow null values. The maximum row size for
thistableis 331 bytes, and the average row size (asreported by optdiag) is
184 bytes, but it is possible to insert arow with less than 40 bytes, since
many columns allow null values. In a data-only-locked table, inserting
short rows and then updating them can result in row forwarding.

See “Data-only locked heap tables’ on page 156 for more information.

You can set the expected row size for tableswith variable-length columns,
using:

e exp_row_size parameter, in acreate table statement.

e sp_chgattribute, for an existing table.

¢ A server-widedefault value, using the configuration parameter default
exp_row_size percent. Thisvalueisapplied to al tableswith variable-
length columns, unless create table or sp_chgattribute is used to set a
row size explicitly or to indicate that rows should be fully packed on
data pages.

273

Reducing row forwarding

If you specify an expected row size value for an allpages-locked table, the
valueisstoredin sysindexes, but the valueisnot applied during insertsand
updates.

If the table is later converted to data-only locking, the exp_row_size is
applied during the conversion process, and to all subsequent inserts and
updates.

Default, minimum, and maximum values for exp_row_size

Table 13-6 shows the minimum and maximum values for expected row
size and the meaning of the special values0 and 1.

Table 13-6: Valid values for expected row size

exp_row_size values

Minimum, maximum, and special values

Minimum The greater of:
e 2bytes
e Thesum of al fixed-length columns
Maximum Maximum data row length
0 Use server-wide default value
1 Fully pack all pages; do not reserve room for expanding rows

Default value

You cannot specify an expected row size for tablesthat have fixed-length
columns only. Columns that accept null values are by definition variable-
length, since they are zero-length when null.

If you do not specify an expected row size or avalue of 0 when you create
a data-only-locked table with variable-length columns, Adaptive Server
uses the amount of space specified by the configuration parameter default
exp_row_size percent for any table that has variable-length columns.

See “ Setting a default expected row size server-wide’ on page 276 for
information on how this parameter affects space on data pages. Use
sp_help to see the defined length of the columnsin the table.

Specifying an expected row size with create table

274

This create table statement specifies an expected row size of 200 bytes:

CHAPTER 13 Setting Space Management Properties

create table new titles (
title_id tid,

title var char (80) not null,

type char (12),

pub_id char(4) null,

price noney nul |,

advance noney nul |,

total _sales int null,

not es var char (200) nul I,

pubdat e dat eti ne,

contract bi t)

| ock dat apages
with exp_row size = 200

Adding or changing an expected row size

To add or change the expected row sizefor atable, ussp_chgattribute. This
sets the expected row size to 190 for the new_titles table:

sp_chgattribute new titles, "exp_row size", 190

If you want atable to switch to the default exp_row_size percent instead of
acurrent, explicit value, enter:

sp_chgattribute new titles, "exp_row size", 0

To fully pack the pages, rather than saving space for expanding rows, set
thevalueto 1.

Changing the expected row sizewith sp_chgattribute doesnot immediately
affect the storage of existing data. The new valueis applied:

« When aclustered index on the table is created or reorg rebuild is run
on the table. The expected row size is applied as rows are copied to
new data pages.

If you increase exp_row_size, and re-create the clustered index or run
reorg rebuild, the new copy of the table may require more storage
space.

e Thenext time apageis affected by data modifications.

275

Reducing row forwarding

Setting a default expected row size server-wide

default exp_row_size percent reserves a percentage of the page sizeto set
aside for expanding updates. The default value, 5, sets aside 5% of the
space available per data page for all data-only-locked tables that include
variable-length columns. Since there are 2002 bytes available on data
pagesin data-only-locked tables, the default val ue sets aside 100 bytesfor
row expansion. This command sets the default value to 10%:

sp_configure "default exp_row_ size percent", 10

Setting default exp_row_size percent to O means that no space is reserved
for expanding updates for any tables where the expected row size is not
explicitly set with create table or sp_chgattribute.

If an expected row size for atableis specified with create table or
sp_chgattribute, that value takes precedence over the server-wide setting.

Displaying the expected row size for atable
Use sp_help to display the expected row size for atable:
sp_help titles

If thevalueis0, and the table has nullable or variable-length columns, use
sp_configure to display the server-wide default value:

sp_configure "default exp_row size percent”

Thisquery displaysthe value of the exp_rowsize column for all user tables
in a database:

sel ect object_nanme(id), exp_rowsize
from sysi ndexes
where id > 100 and (indid = 0 or indid = 1)

Choosing an expected row size for a table

Setting an expected row size helps reduce the number of forwarded rows
only if the rows expand after they are first inserted into the table. Setting
the expected row size correctly means that:

e Your application resultsin asmall percentage of forwarded rows.

e You do not waste too much space on data pages due to over-
configuring the expected row size value.

276

CHAPTER 13 Setting Space Management Properties

Using optdiag to check for forwarded rows

For tablesthat already contain data, use optdiag to display statisticsfor the
table. The“Datarow size” shows the average data row length, including

the row overhead. This sample optdiag output for the titles table shows 12
forwarded rows and an average data row size of 184 bytes:

Statistics for table: "titles"
Dat a page count: 655
Enpty data page count: 5
Data row count: 4959. 000000000
Forwar ded row count: 12. 000000000
Del eted row count: 84. 000000000
Dat a page CR count: 0. 000000000
QAM + al | ocati on page count: 6
Pages in allocation extent: 1
Data row si ze: 184. 000000000

You can al so use optdiag to check the number of forwarded rowsfor atable
to determine whether your setting for exp_row_size isreducing the number
of forwarded rows generated by your applications.

For more information on optdiag, see Chapter 36, “ Statistics Tables and
Displaying Statistics with optdiag.”

Querying systabstats to check for forwarded rows

You can check the forwrowent column in the systabstats table to see the
number of forwarded rows for atable. This query checks the number of
forwarded rowsfor al user tables (those with object IDs greater than 100):

sel ect object_nane(id) , forw ownt
from systabstats
where id > 100 and (indid = 0 or indid = 1)

Note Forwarded row counts are updated in memory, and the housekeeper
periodically flushes them to disk.

If you need to query the systabstats table using SQL, usesp_flushstats first
to ensure that the most recent statistics are available. optdiag flushes
statistics to disk before displaying values.

277

Reducing row forwarding

Conversion of max_rows_per_page to exp_row_size

If amax_rows_per_page valueisset for an allpages-locked table, the value
is used to compute an expected row size during the alter table...lock
command. The formulais shown in Table 13-7.

Table 13-7: Conversion of max_rows_per_page to exp_row_size

Value of max_rows_per_page Value of exp_row_size

0 Percentage value set by default exp_row_size percent
255 1 (fully packed pages)
1-254 The smaller of:

e Maximum row size
e 2002/max_rows_per_page value

For example, if max_rows_per_page is set to 10 for an allpages-locked
table with a maximum defined row size of 300 bytes, the exp_row_size
value will be 200 (2002/10) after the table is altered to use data-only
locking.

If max_rows_per_page is set to 10, but the maximum defined row sizeis
only 150, the expected row size value will be set to 150.

Monitoring and managing tables that use expected row size

After setting an expected row size for atable, use optdiag or queries on
systabstats to check the number of forwarded rows till being generated by
your applications. Run reorg forwarded_rows if you feel that the number of
forwarded rows is high enough to affect application performance. reorg
forwarded_rows uses short transactions and is very nonintrusive, so you
canrun it while applications are active.

See the System Administration Guide for more information.

If the application still resultsin alarge number of forwarded rows, you
may want to use sp_chgattribute to increase the expected row size for the
table.

You may want to allow a certain percentage of forwarded rows. If running
reorg to clear forwarded rows does not cause concurrency problems for
your applications, or if you can run reorg at non-peak times, allowing a
small percentage of forwarded rows does not cause a serious performance
problem.

278

CHAPTER 13 Setting Space Management Properties

Setting the expected row size for atable increases the amount of storage
space and the number of 1/Os needed to read a set of rows. If theincrease
inthe number of I/Osdueto increased storage spaceishigh, then alowing
rowsto beforwarded and occasionally running reorg may havelessoverall
performance impact.

Leaving space for forwarded rows and inserts

Setting areservepagegap value can reduce the frequency of maintenance
activities such as running reorg rebuild and re-creating indexes for some
tables to maintain high performance. Good performance on data-only-
locked tables requires good data clustering on the pages, extents, and
allocation units used by the table.

The clustering of data and index pagesin physical storage stays high as
long asthere is space nearby for storing forwarded rows and rowsthat are
inserted in index key order. The reservepagegap space management
property is used to reserve empty pages for expansion when additional
pages need to be allocated.

Row and page cluster ratios are usually 1.0, or very closeto 1.0,
immediately after a clustered index is created on atable or immediately
after reorg rebuild isrun. However, future datamodifications can causerow
forwarding and can require allocation of additional data and index pages
to store inserted rows.

Setting areserve page gap can reduce storage fragmentation and reduce
the frequency with which you need to re-create indexes or run reorg rebuild
on the table.

Extent allocation operations and reservepagegap

Commands that allocate many data pages perform extent allocation to
allocate eight pages at atime, rather than allocating just one page at atime.
Extent allocation reduceslogging, sinceit writes one log record instead of
eight.

279

Leaving space for forwarded rows and inserts

280

Commands that perform extent allocation are: select into, create index,
reorg rebuild, bep, alter table...lock, and the alter table...unique and primary
key constraint options, since these constraints create indexes. alter table
commands that add, drop, or modify columns sometimes require atable-
copy operation also. All of these commands all ocate an extent, and, unless
areserve page gap valueisin effect, fill all eight pages.

You specify thereservepagegap in pages, indicating aratio of empty pages
tofilled pages. For example, if you specify areservepagegap of 8, an
operation doing extent allocation fills seven pages and leaves the eighth
page empty.

These empty pages can be used to store forwarded rows and for
maintaining the clustering of data rowsinindex key order, for data-only-
locked tables with clustered indexes.

Since extent all ocati on operations must allocate entire extents, they do not
use the first page on each allocation unit, because it stores the allocation
page. For example, if you create a clustered index on alarge table and do
not specify areserve page gap, each allocation unit has 7 empty,
unallocated pages, 248 used pages, and the all ocation page. These 7 pages
can be used for row forwarding and inserts to the table, which helps keep
forwarded rows and inserts with clustered indexes on the same allocation
unit. Using reservepagegap leaves additional empty pages on each
allocation unit.

Figure 13-1shows how an allocation unit might look after a clustered
index iscreated with areservepagegap value of 16 on thetable. The pages
that share the first extent with the allocation unit are not used and are not
allocated to the table. Pages 279, 295, and 311 are the unused pages on
extents that are allocated to the table.

CHAPTER 13 Setting Space Management Properties

Figure 13-1: Reserved pages after creating a clustered index

256(257|258|259|260|261|262|263

264|265 |266(267|268(269|270(271
272|273(274|275(276|277|278)279 Allocation page

280(281|282|283|284|285|286|287
288(288(2901291|291|293|294)295
296(297(298|299|300(301|302|303 E Reserved pages

304(305|306(|307|308|309(310}311 Unallocated pages

Pages used by object

504|505|506 (507 |508|509 510I511

Specifying a reserve page gap with create table
This create table command specifies a reservepagegap value of 16:

create table nore_titles (
title_id tid,

title var char (80) not null,
type char (12),

pub_id char(4) null,

price nmoney nul |,

advance nmoney nul |,

total _sales int null,

not es var char (200) nul I,
pubdat e dateti me,

contract bi t

)

| ock dat ar ows
with reservepagegap = 16

Any operation that performs extent all ocation on the more_titles table
leaves 1 empty page for each 15 filled pages.

281

Leaving space for forwarded rows and inserts

The default value for reservepagegap is 0, meaning that no spaceis
reserved. The maximum value is 255, meaning that 1 pageisleft unused
on each allocation unit.

Specifying areserve page gap with create index

Thiscommand specifiesareservepagegap of 10 for the nonclusteredindex
pages:

create index type_price_ix
on nore_titles(type, price)
with reservepagegap = 10

You can also specify areservepagegap valuewith thealter table...constraint
options, primary key and unique, that create indexes. This exampl e creates
aunigue constraint:

alter table nore_titles
add constraint unig_id unique (title_id)
with reservepagegap = 20

Changing reservepagegap

282

The following command uses sp_chgattribute to change the reserve page
gap for thetitles table to 20:

sp_chgattribute nore_titles, "reservepagegap", 20
This command sets the reserve page gap for the index title_ix to 10:

sp_chgattribute "titles.title_ix",
"reservepagegap", 10

sp_chgattribute changesonly valuesin system tables; datais not moved on
data pages as aresult of running the procedure. Changing reservepagegap
for atable affects future storage as follows:

e When datais bulk-copied into the table, the reserve page gap is
applied to all newly alocated space, but the storage of existing pages
is not affected.

* When thereorg rebuild command is run on the table, the reserve page
gap isapplied asthe tableis copied to new data pages.

* Whenaclustered index is created, the reserve page gap value stored
for the tableis applied to the data pages.

CHAPTER 13 Setting Space Management Properties

The reserve page gap is applied to index pages during:
e alter table...lock, while rebuilding indexes for the table
e reorg rebuild commands that affect indexes

¢ create clustered index and alter table commandsthat create a clustered
index, as nonclustered indexes are rebuilt

reservepagegap examples

These examples show how reservepagegap isapplied during alter table and
reorg rebuild commands.

reservepagegap specified only for the table

The following commands specify areservepagegap for the table, but do
not specify avaluein the create index commands:

sp_chgattribute titles, "reservepagegap", 16
create clustered index title_ix on titles(title_id)
create index type_price on titles(type, price)

Table 13-8 shows the values applied when running reorg rebuild or
dropping and creating a clustered index.

Table 13-8: reservepagegap values applied with table-level saved

value
Command Allpages-locked table Data-only-locked table
create clustered Data and index pages: 16 Data pages: 16
index or clustered index rebuild Index pages: O (filled extents)
dueto reorg rebuild
Nonclustered index rebuild Index pages: O (filled extents) Index pages. O (filled extents)

The reservepagegap for the table is applied to both the data and index
pages for an allpages-locked table with a clustered index. For a data-only-
locked table, the table's reservepagegap is applied to the data pages, but
not to the clustered index pages.

reservepagegap specified for a clustered index

These commands specify different reservepagegap valuesfor thetableand
the clustered index, and a value for the nonclustered type_price index:

sp_chgattribute titles, "reservepagegap", 16

283

Leaving space for forwarded rows and inserts

create clustered index title_ix on titles(title)
with reservepagegap = 20

create index type_price on titles(type, price)
with reservepagegap = 24

Table 13-9 shows the effects of this sequence of commands.

Table 13-9: reservepagegap values applied with for index pages

Command Allpages-locked table Data-only-locked table
create clustered Data and index pages: 20 Data pages: 16

index or clustered index rebuild due to Index pages: 20

reorg rebuild

Nonclustered index rebuilds Index pages. 24 Index pages. 24

For allpages-locked tables, the reservepagegap specified with create
clustered index appliesto both data and index pages. For data-only-locked
tables, the reservepagegap specified with create clustered index applies
only to the index pages. If there is a stored reservepagegap value for the
table, that valueis applied to the data pages.

Choosing a value for reservepagegap
Choosing a value for reservepagegap depends on:
* Whether the table has a clustered index,
* Therate of insertsto the table,
* The number of forwarded rows that occur in the table, and

« How often you re-create the clustered index or run the reorg rebuild
command.

When reservepagegap is configured correctly, enough pages are left for
allocation of new pages to tables and indexes so that the cluster ratios for
the table, clustered index, and nonclustered leaf-level pages remain high
during the intervals between regular index maintenance tasks.

Monitoring reservepagegap settings

You can use optdiag to check the cluster ratio and the number of forwarded
rows in tables. Declines in cluster ratios can also indicate that running
reorg commands could improve performance:

284

CHAPTER 13 Setting Space Management Properties

e |If the data page cluster ratio for a clustered index is low, run reorg
rebuild or drop and re-create the clustered index.

» |If theindex page cluster ratio islow, drop and re-create the non-
clustered index.

To reduce the frequency with which you run reorg commands to maintain
cluster ratios, increase the reservepagegap dightly before running reorg
rebuild.

See Chapter 36, “Statistics Tables and Displaying Statistics with
optdiag,” for more information on optdiag.

reservepagegap and sorted_data options to create index

When you create a clustered index on atable that is already stored on the
data pages in index key order, the sorted_data option suppresses the step
of copying the data pages in key order for unpartitioned tables. The
reservepagegap option can be specified in create clustered index
commands, to leave empty pages on the extents used by the table, leaving
room for later expansion. There are rules that determine which option
takes effect. You cannot use sp_chgattribute to change the reservepagegap
value and get the benefits of both of these options.

If you specify both with create clustered index:

» Onunpartitioned, allpages-locked tables, if thereservepagegap value
specified with create clustered index matchesthe valuesalready stored
insysindexes, thesorted_data option takes precedence. Datapagesare
not copied, so the reservepagegap is not applied. If the
reservepagegap value specified inthecreate clustered index command
is different from the values stored in sysindexes, the data pages are
copied, and the reservepagegap value specified in the command is
applied to the copied pages.

» Ondata-only-locked tables, the reservepagegap value specified with
create clustered index applies only to the index pages. Data pages are
not copied.

Background on the sorted_data option

Besides reservepagegap, other options to create clustered index may
require a sort, which causes the sorted_data option to be ignored.

285

Leaving space for forwarded rows and inserts

For more information, see “ Creating an index on sorted data’ on page
359.

In particular, the following comments relate to the use of reservepagegap:

On partitioned tables, any create clustered index command that
requires copying data pages performs a parallel sort and then copies
the data pagesin sorted order, applying the reservepagegap values as
the pages are copied to new extents.

Whenever the sorted_data option is not superseded by other create
clustered index options, the table is scanned to determine whether the
datais stored in key order. Theindex isbuilt during the scan, without
asort being performed.

Table 13-10 shows how these rules apply.

Table 13-10: reservepagegap and sorted_data options

Partitioned table Unpartitioned table

Allpages-L ocked Table

create index with sorted_data

Does not copy data pages; buildsthe Doesnot copy data pages; buildsthe

and matching reservepagegap index as pages are scanned. index as pages are scanned.
value
create index with sorted_data Performs parallel sort, applying Copies data pages, applying
and different reservepagegap reservepagegap as pages are stored reservepagegap and building the
value in new locations in sorted order. index as pages are copied; no sort is
performed.
Data-Only-L ocked Table
create index with sorted_data reservepagegap appliesto index reservepagegap appliesto index
and any reservepagegap value pagesonly; does not copy data pages only; does not copy data
pages. pages.

Matching options and goals

If you want to redistribute the data pages of atable, leaving room for later
expansion:

286

For allpages-locked tables, drop and re-create the clustered index
without using the sorted_data option. Specify the desired
reservepagegap value in the create clustered index command, if the
value stored in sysindexes is not the value you want.

CHAPTER 13 Setting Space Management Properties

e For data-only-locked tables, use sp_chgattribute to set the
reservepagegap for thetableto the desired value and then drop and re-
create the clustered index, without using the sorted_data option. The
reservepagegap stored for the table applies to the data pages. If
reservepagegap is specified in the create clustered index command, it
applies only to the index pages.

To create a clustered index without copying data pages:

¢ For allpages-locked tables, use the sorted_data option, but do not
specify areservepagegap with the create clustered index command.
Alternatively, you can specify avaluethat matchesthevalue storedin
sysindexes.

e For data-only-locked tables, use the sorted_data option. If a
reservepagegap value is specified in the create clustered index
command, it applies only to the index pages and does not cause data

page copying.

If you plan to use the sorted_data option following a bulk copy operation,
aselect into command, or another command that uses extent allocation, set
the reservepagegap value that you want for the data pages before copying
the data or specify it in the select into command. Once the data pages have
been allocated and filled, the following command appliesreservepagegap
to the index pages only, since the data pages do not need to be copied:

create clustered index title_ix
on titles(title_id)
with sorted_data, reservepagegap = 32

Using max_rows_per_page on allpages-locked tables

Setting a maximum number of rows per pages can reduce contention for
allpages-locked tables and indexes. In most cases, it is preferable to
convert the tables to use a data-only-locking scheme. If there is some
reason that you cannot change the locking scheme and contention isa
problem on an allpages-locked table or index, setting a
max_rows_per_page Value may help performance.

287

Using max_rows_per_page on allpages-locked tables

When there are fewer rows on the index and data pages, the chances of
lock contention are reduced. As the keys are spread out over more pages,
it becomes more likely that the page you want is not the page someone el se
needs. To change the number of rows per page, adjust the fillfactor or
max_rows_per_page values of your tables and indexes.

fillfactor (defined by either sp_configure or create index) determines how
full Adaptive Server makes each data page when it creates anew index on
existing data. Sincefillfactor hel ps reduce page splits, exclusive locks are
also minimized on the index, improving performance. However, the
fillfactor value is not maintained by subsequent changes to the data.
max_rows_per_page (defined by sp_chgattribute, create index, create table,
or alter table) is similar to fillfactor, except that Adaptive Server maintains
the max_rows_per_page val ue as the data changes.

The costs associated with decreasing the number of rows per page using
fillfactor or max_rows_per_page include more /O to read the same number
of data pages, more memory for the same performance from the data
cache, and morelocks. Inaddition, alow valuefor max_rows_per_page for
atable may increase page splits when datais inserted into the table.

Reducing lock contention

288

The max_rows_per_page value specified in a create table, create index, or
alter table command restricts the number of rows allowed on a data page,
aclustered index |eaf page, or anonclustered index leaf page. Thisreduces
lock contention and improves concurrency for frequently accessed tables.

max_rows_per_page appliesto the data pages of a heap table or the |eaf
pages of an index. Unlike fillfactor, which is not maintained after creating
atable or index, Adaptive Server retains the max_rows_per_page value
when adding or deleting rows.

The following command creates the sales table and limits the maximum
rows per page to four:

create table sales

(stor_id char (4) not null,
ord_num varchar(20) not null,
date datetime not null)

with max_rows_per_page = 4

CHAPTER 13 Setting Space Management Properties

If you create atable with amax_rows_per_page value, and then create a
clustered index on the table without specifying max_rows_per_page, the
clustered index inherits the max_rows_per_page value from the create
table statement. Creating a clustered index with max_rows_per_page
changes the value for the table’s data pages.

Indexes and max_rows_per_page

The default value for max_rows_per_page is 0, which creates clustered
indexes with full data pages, creates nonclustered indexes with full leaf
pages, and leaves a comfortable amount of space within the index B-tree
in both the clustered and nonclustered indexes.

For heap tables and clustered indexes, the range for max_rows_per_page
is 0-256.

For nonclustered indexes, the maximum value for max_rows_per_page is
the number of index rowsthat fit on the leaf page, without exceeding 256.
To determine the maximum value, subtract 32 (the size of the page header)
from the page size and divide the difference by the index key size. The
following statement cal culatesthe maximum value of max_rows_per_page
for anonclustered index:

sel ect (@®agesize - 32)/mnlen
from sysi ndexes
where nane = "indexnane"

select into and max_rows_per_page

select into does not carry over the base table’'s max_rows_per_page value,
but creates the new table with a max_rows_per_page value of 0. Use
sp_chgattribute to set the max_rows_per_page value on the target table.

Applying max_rows_per_page to existing data

sp_chgattribute configures the max_rows_per_page of atable or an index.
sp_chgattribute affects all future operations; it does not change existing
pages. For example, to change the max_rows_per_page value of the
authors tableto 1, enter:

sp_chgattribute authors, "max_rows_per_page", 1

289

Using max_rows_per_page on allpages-locked tables

There are two ways to apply a max_rows_per_page value to existing data:

« |f thetable has aclustered index, drop and re-create the index with a
max_rows_per_page value.

e Usethebcp utility asfollows:
a Copy out the table data.
b Truncate thetable.
C Setthemax_rows_per_page value with sp_chgattribute.
d Copy thedataback in.

290

CHAPTER 14

Memory Use and Performance

This chapter describes how Adaptive Server uses the data and procedure
caches and other issues affected by memory configuration. In general, the
more memory available, the faster Adaptive Server’s response time.

Topic Page
How memory affects performance 291
How much memory to configure 292
Cachesin Adaptive Server 295
Procedure cache 296
Data cache 298
Configuring the data cache to improve performance 303
Named data cache recommendations 314
Maintaining data cache performance for large 1/0 325
Speed of recovery 326
Auditing and performance 328

The System Administration Guide describes how to determine the best
memory configuration valuesfor Adaptive Server, and the memory needs

of other server configuration options.

How memory affects performance

Having ample memory reduces disk 1/0, which improves performance,
since memory access is much faster than disk access. When a user issues
aquery, the dataand index pages must bein memory, or read into memory,
in order to examine the values on them. If the pages already residein

memory, Adaptive Server does not need to perform disk 1/0.

Adding more memory is cheap and easy, but devel oping around memory

problems is expensive. Give Adaptive Server as much memory as

possible.

Memory conditions that can cause poor performance are:

201

How much memory to configure

* Total datacache sizeistoo small.
¢ Procedure cache sizeistoo small.

e Only thedefault cacheis configured on an SMP system with several
active CPUs, leading to contention for the data cache.

» User-configured data cache sizes are not appropriate for specific user
applications.

« Configured I/O sizes are not appropriate for specific queries.

e Audit queue size is not appropriate if auditing feature isinstalled.

How much memory to configure

292

Memory is the most important consideration when you are configuring
Adaptive Server. Memory is consumed by various configuration
parameters, procedure cache and data caches. Setting the values of the
various configuration parameters and the caches correctly is critical to
good system performance.

The total memory allocated during boot-time is the sum of memory
required for al the configuration needs of Adaptive Server. Thisvalue can
be obtained from the read-only configuration parameter 'total logical
memory'. Thisvalue is calculated by Adaptive Server. The configuration
parameter 'max memory' must be greater than or equal to 'total logical
memory'. 'max memory' indicates the amount of memory you will allow
for Adaptive Server needs.

During boot-time, by default, Adaptive Server allocates memory based on
the value of 'total logical memory'. However, if the configuration
parameter 'allocate max shared memory' has been set, then the memory
allocated will be based on the value of 'max memory'. The configuration
parameter 'allocate max shared memory' will enable a system
administrator to allocate, the maximum memory that is allowed to be used
by Adaptive Server, during boot-time.

The key points for memory configuration are:

e Thesystem administrator should determinethe size of shared memory
available to Adaptive Server and set ‘max memory' to this value.

CHAPTER 14 Memory Use and Performance

The configuration parameter 'allocate max shared memory' can be
turned on during boot-time and run-time to allocate all the shared
memory up to 'max memory' with the least number of shared memory
segments. Large number of shared memory segments has the
disadvantage of some performance degradation on certain platforms.
Please check your operating system documentation to determine the
optimal number of shared memory segments. Note that once a shared
memory segment is alocated, it cannot be released until the next
server reboot.

Configure the different configuration parameters, if the defaults are
not sufficient.

Now the difference between 'max memory' and 'total logical memory'
isadditional memory available for procedure, data cachesor for other
configuration parameters.

The amount of memory to be allocated by Adaptive Server during
boot-time, is determined by either 'total logical memory' or 'max
memory'. If this value too high:

e Adaptive Server may not start, if the physical resources on your
machine doesis not sufficient.

e If it does start, the operating system page fault rates may rise
significantly and the operating system may need to re configured
to compensate.

The System Administration Guide provides a thorough discussion of:

How to configure the total amount of memory used by Adaptive
Server

Configurable parameters that use memory, which affects the amount
of memory left for processing queries

Handling wider character literalsrequires Adaptive Server to alocate
memory for string user data. Also, rather than statically allocating
buffers of the maximum possible size, Adaptive Server allocates
memory dynamically. That is, it allocates memory for local buffersas
it needsit, alwaysallocating the maximum sizefor these buffers, even
if large buffers are unnecessary. These memory management requests
may cause Adaptive Server to have amarginal loss in performance
when handling wide-character data.

293

How much memory to configure

e If you require Adaptive Server to handle more than 1000 columns
from asingle table, or process over 10000 arguments to stored
procedures, the server must set up and allocate memory for various
internal datastructuresfor these objects. Anincreasein the number of
small tasks that are performed repeatedly may cause performance
degradation for queries that deal with larger numbers of such items.
This performance hit increases as the number of columns and stored
procedure arguments increases.

¢ Memory that is allocated dynamically (as opposed to rebooting
Adaptive Server to allocate the memory) dightly degrades the
server’s performance.

¢ When Adaptive Server useslarger logical pagesizes, al disk I/Osare
done in terms of the larger logical page sizes. For example, if
Adaptive Server uses an 8K logical page size, it retrieves data from
the disk in 8K blocks. This should result in an increased |/0
throughput, although the amount of throughput is eventually limited
by the controller’s I/O bandwidth.

What remains after al other memory needs have been met isavailable for
the procedure cache and the data cache. Figure 14-1 shows how memory
isdivided.

294

CHAPTER 14 Memory Use and Performance

Figure 14-1: How Adaptive Server uses memory

i 0S and other programs
Adaptive Server Executable | A
. i J l
Physical Static overhead :
memory | and Internal .
Kernel an structures '
server structures ,
\ .
Adaptive =
Server Procedure cache =
D
= .
Total Data cache overhead Cache = .
. = .
logical = .
memory Data cache =
="
| Total physical memory |
LTSS \ 4

Caches in Adaptive Server

Once the procedure cache and the data cache are configured there is no
division or left over memory.

» Theprocedure cache — used for stored procedures and triggers and
for short-term memory needs such as statistics and query plans for
parallel queries.

» Thedata cache—used for data, index, and log pages. The data cache
can bedividedinto separate, named caches, with specific databases or
database objects bound to specific caches.

Set the procedure cache size to an absolute value using sp_configure. See
the System Administration Guide for more information.

295

Procedure cache

Procedure cache

Adaptive Server maintains an MRU/LRU (most recently used/least
recently used) chain of stored procedure query plans. As users execute
stored procedures, Adaptive Server looks in the procedure cache for a
query planto use. If aquery planisavailable, it is placed on theMRU end
of the chain, and execution begins.

If no planisin memory, or if all copies arein use, the query tree for the
procedureisread from the sysprocedures table. It isthen optimized, using
the parameters provided to the procedure, and put on the MRU end of the
chain, and execution begins. Plans at the LRU end of the page chain that
are not in use are aged out of the cache.

The memory allocated for the procedure cache holds the optimized query
plans (and occasionally trees) for al batches, including any triggers.

If more than one user usesaprocedureor trigger simultaneously, therewill
be multiple copiesof it in cache. If the procedure cacheistoo small, auser
trying to execute stored procedures or queriesthat firetriggersreceivesan
error message and must resubmit the query. Space becomes available
when unused plans age out of the cache.

Whenyou first install Adaptive Server, the default procedure cache sizeis
3271 memory pages. The optimum value for the procedure cache varies
from application to application, and it may also vary as usage patterns
change. The configuration parameter to set the size, procedure cache size,
is documented in the System Administration Guide.

Getting information about the procedure cache size

proc buffers

proc headers

296

When you start Adaptive Server, the error |og states how much procedure
cacheisavailable.

Represents the maxi mum number of compiled procedural objectsthat can
reside in the procedure cache at one time.

Represents the number of pages dedicated to the procedure cache. Each
object in cache requires at least 1 page.

CHAPTER 14 Memory Use and Performance

Monitoring procedure cache performance

sp_sysmon reports on stored procedure executions and the number of
times that stored procedures need to be read from disk.

For more information, see “Procedure cache management” on page 988.

Procedure cache errors

If there is not enough memory to load another query tree or plan or the
maximum number of compiled objectsis aready in use, Adaptive Server
reports Error 701.

Procedure cache sizing

On a production server, you want to minimize the procedure reads from
disk. When a user needs to execute a procedure, Adaptive Server should
be able to find an unused tree or plan in the procedure cache for the most
common procedures. The percentage of timesthe server findsan available
plan in cacheis called the cache hit ratio. Keeping a high cache hit ratio
for procedures in cache improves performance.

The formulas in Figure 14-2 suggest a good starting point.

Figure 14-2: Formulas for sizing the procedure cache

Procedure (Max # of concurrent users) *
cache size = (Size of largest plan) * 1.25

Minimum procedure (# of main procedures) *
cache size needed = (Average plan size)

If you have nested stored procedures (for example, A, B and C)—
procedure A callsprocedure B, which calls procedure C—all of them need
to be in the cache at the same time. Add the sizes for nested procedures,
and use the largest sumin place of “Size of largest plan” in the formulain
Figure 14-2.

297

Data cache

The minimum procedure cache sizeisthe smallest amount of memory that
allows at least one copy of each frequently used compiled object to reside
in cache. However, the procedure cache can also be used as additional
memory at execution time, such aswhen an ad hoc query uses the distinct
keyword which uses the internal Imlink function that will dynamically
allocate memory from the procedure cache. Then the create index will also
use the procedure cache memory and can generate the 701 error though no
stored procedure isinvolved.

For additional information on sizing the procedure cache see* Using
sp_monitor to measure CPU usage” on page 38

Estimating stored procedure size

To get arough estimate of the size of a single stored procedure, view, or
trigger, use:

select(count(*) / 8) +1
from sysprocedures
where id = object_id("procedure_name")

For example, to find the size of the titleid_proc in pubs2:

sel ect (count(*) / 8) +1
from sysprocedures
where id = object _id("titleid_proc")

Data cache

Default data cache and other cachesare configured as absolute values. The
data cache contains pages from recently accessed objects, typically:

e sysobjects, sysindexes, and other system tables for each database
e Activelog pages for each database

e Thehigher levels and parts of the lower levels of frequently used
indexes

« Recently accessed data pages

298

CHAPTER 14 Memory Use and Performance

Default cache at installation time

When you first install Adaptive Server, it hasasingle data cachethat is
used by all Adaptive Server processes and objectsfor data, index, and log
pages. The default sizeis SMB.

The following pages describe the way this single data cache is used.
“Configuring the data cache to improve performance” on page 303
describes how to improve performance by dividing the data cache into
named caches and how to bind particular objects to these named caches.

Most of the concepts on aging, buffer washing, and caching strategies
apply to both the user-defined data caches and the default data cache.

Page aging in data cache

The Adaptive Server data cache is managed on a most recently used/l east
recently used (MRU/LRU) basis. As pages in the cache age, they enter a
wash area, where any dirty pages (pages that have been modified whilein
memory) are written to disk. There are some exceptions to this:

» Caches configured with relaxed LRU replacement policy use the
wash section as described above, but are not maintained on an
MRU/LRU basis.

Typically, pagesin the wash section are clean, i.e. the I/O on these
pages have been completed. When atask or query wantsto grab a
page from LRU end it expects the page to be clean. If not, the query
has to wait for the 1/O to complete on the page before it can be
grabbed which impairs performance.

* A gpecia strategy ages out index pagesand OAM pages more slowly
than data pages. These pages are accessed frequently in certain
applications and keeping them in cache can significantly reduce disk
reads.

See the System Administration Guide for more information.

» Adaptive Server may choose to use the LRU cache replacement
strategy that does not flush other pages out of the cache with pages
that are used only once for an entire query.

» The checkpoint process ensuresthat if Adaptive Server needsto be
restarted, the recovery process can be completed in a reasonable
period of time.

299

Data cache

When the checkpoint process estimates that the number of changesto
adatabase will take longer to recover than the configured value of the
recovery interval configuration parameter, it traverses the cache,
writing dirty pages to disk.

« Recovery uses only the default data cache making it faster.

e The housekeeper task writes dirty pagesto disk when idletimeis
available between user processes.

Effect of data cache on retrievals

300

Figure 14-3 shows the effect of data caching on a series of random select
statements that are executed over a period of time. If the cache is empty
initially, the first select statement is guaranteed to require disk 1/O. You
have to be sure to adequately size the data cache for the number of
transactions you expect against the database.

As more queries are executed and the cache is being filled, thereisan
increasing probability that one or more page reguests can be satisfied by
the cache, thereby reducing the average response time of the set of
retrievals.

Once the cacheisfilled, there is afixed probability of finding a desired
page in the cache from that point forward.

CHAPTER 14 Memory Use and Performance

Figure 14-3: Effects of random selects on the data cache

Fill

l cache

—>

<4—— Steady ——p
state

Average response time

Random selects over time

If the cache is smaller than the total number of pages that are being
accessed in all databases, thereisachancethat agiven statement will have
to perform somedisk 1/0O. A cache does not reduce the maximum possible
response time—some query may still need to perform physical 1/0 for all
of the pagesit needs. But caching decreases the likelihood that the
maximum delay will be suffered by a particular query—more queries are
likely to find at least some of the required pagesin cache.

Effect of data modifications on the cache

The behavior of the cache in the presence of update transactionsis more
complicated than for retrievals.

Thereistill aninitial period during which the cachefills. Then, because
cache pages are being modified, there is a point at which the cache must
begin writing those pagesto disk beforeit can load other pages. Over time,
the amount of writing and reading stabilizes, and subsequent transactions
have a given probability of requiring adisk read and another probability
of causing adisk write.

The steady-state period is interrupted by checkpoints, which cause the
cache to write all dirty pagesto disk.

301

Data cache

Data cache performance

You can observe data cache performance by examining the cache hit
ratio, the percentage of page requests that are serviced by the cache.

One hundred percent is outstanding, but implies that your data cacheisas
large as the data or at least large enough to contain all the pages of your
frequently used tables and indexes.

A low percentage of cache hitsindicates that the cache may be too small
for the current application load. Very large tableswith random page access
generally show alow cache hit ratio.

Testing data cache performance

302

Consider the behavior of the dataand procedure cacheswhen you measure
the performance of a system. When atest begins, the cache can bein any
one of the following states:

e Empty

e Fully randomized

e Partially randomized
o Deterministic

An empty or fully randomized cacheyields repeatabl e test results because
the cache isin the same state from one test run to another.

A partially randomized or deterministic cache contains pages left by
transactions that were just executed. Such pages could be the result of a
previous test run. In these cases, if the next test steps request those pages,
then no disk 1/0 will be needed.

Such a situation can bias the results away from a purely random test and
lead to inaccurate performance estimates.

The best testing strategy is to start with an empty cache or to make sure
that all test steps access random parts of the database. For more precise
testing, execute amix of queriesthat is consistent with the planned mix of
user gueries on your system.

CHAPTER 14 Memory Use and Performance

Cache hit ratio for a single query

To see the cache hit ratio for asingle query, use set statistics io on to see
the number of logical and physical reads, and set showplan on to see the
I/O size used by the query.

To compute the cache hit ratio, use this formula:

Cache hit ratio Logical reads - (Physical reads * Pages

Logical reads

With statistics io, physical reads are reported in [/O-size units. If a query
uses 16K 1/0, it reads 8 pages with each I/O operation.

If statistics io reports 50 physical reads, it has read 400 pages. Use
showplan to see the 1/O size used by a query.

Cache hit ratio information from sp_sysmon
sp_sysmon reports on cache hits and missesfor:

e All caches on Adaptive Server
e Thedefault data cache
¢ Any user-configured caches

Theserver-widereport providesthetotal number of cache searchesandthe
percentage of cache hits and cache misses.

See “Cache statistics summary (all caches)” on page 976.

For each cache, the report contains the number of cache searches, cache
hits and cache misses, and the number of times that a needed buffer was
found in the wash section.

See “ Cache management by cache” on page 981.

Configuring the data cache to improve performance

When you install Adaptive Server, it has single default data cache, with a
2K memory pool, one cache partition and a single spinlock.

303

Configuring the data cache to improve performance

304

To improve performance you can add data caches and bind databases or
database objects to them:

1 To reduce contention on the default data cache spinlock, divide the
cacheintonwherenisl, 2, 4, 8,16, 32 or 64. If you have contention
on the spinlock with 1 cache partition, the contention is expected to
reduce x/n where nis the number of partitions.

2 When aparticular cache partition spinlock is hot, consider splitting
the default cache into named caches.

3 If thereis till contention, consider splitting the named cache into
named cache partitions.

You can configure 4K, 8K, and 16K buffer poolsfrom thelogical pagesize
in both user-defined data caches and the default data caches, allowing
Adaptive Server to perform large 1/O. In addition, caches that are sized to
completely hold tables or indexes can use relaxed LRU cache policy to
reduce overhead.

You can also split the default data cache or a named cache into partitions
to reduce spinlock contention.

Configuring the data cache can improve performance in the following
ways:

e You can configure named data caches large enough to hold critical
tables and indexes.

This keeps other server activity from contending for cache space and
speeds up queries using these tables, since the needed pages are
always found in cache.

You can configure these caches to use relaxed LRU replacement
policy, which reduces the cache overhead.

e Youcanhind a“hot” table—atable in high demand by user
applications—to one cache and the indexes on the table to other
caches to increase concurrency.

e You can create anamed data cache large enough to hold the “hot
pages’ of atable where a high percentage of the queries reference
only aportion of the table.

CHAPTER 14 Memory Use and Performance

For example, if atable contains datafor ayear, but 75% of the queries
reference data from the most recent month (about 8% of the table),
configuring a cache of about 10% of the table size provides room to
keep the most frequently used pages in cache and leaves some space
for the less frequently used pages.

¢ You can assign tables or databases used in decision support systems
(DSS) to specific caches with large I/0 configured.

This keeps DSS applications from contending for cache space with
online transaction processing (OLTP) applications. DSS applications
typically access large numbers of sequential pages, and OLTP
applications typically accessrelatively few random pages.

e You can bind tempdb to its own cacheto keep it from contending with
other user processes.

Proper sizing of the tempdb cache can keep most tempdb activity in
memory for many applications. If this cache islarge enough, tempdb
activity can avoid performing 1/0.

e Text pagescan be bound to named cachesto improve the performance
on text access.

¢ You can bind a database’s |og to a cache, again reducing contention
for cache space and access to the cache.

¢ When changes are made to a cache by a user process, a spinlock
denies all other processes access to the cache.

Although spinlocks are held for extremely brief durations, they can
slow performance in multiprocessor systems with high transaction
rates. When you configure multiple caches, each cache is controlled
by a separate spinlock, increasing concurrency on systems with
multiple CPUs.

Within a single cache, adding cache partitions creates multiple
spinlocks to further reduce contention. Spinlock contention is not an
issue on single-engine servers.

Most of these possible usesfor named data caches have the greatest impact
on multiprocessor systems with high transaction rates or with frequent
DSS queries and multiple users. Some of them can increase performance
on single CPU systemswhen they |ead to improved utilization of memory
and reduce 1/O.

305

Configuring the data cache to improve performance

Commands to configure named data caches

The commands used to configure caches and pools are shown in Table 14-

1

Table 14-1: Commands used to configure caches

Command

Function

sp_cacheconfig

Creates or drops named caches and set the size, cache type, cache policy
and local cache partition number. Reports on sizes of caches and pools.

sp_poolconfig

Creates and drops I/O pools and changes their size, wash size, and
asynchronous prefetch limit.

sp_bindcache

Binds databases or database objectsto a cache.

sp_unbindcache

Unbinds the specified database or database object from a cache.

sp_unbindcache_all

Unbinds all databases and objects bound to a specified cache.

sp_helpcache

Reports summary information about data caches and lists the databases
and database objects that are bound to a cache. Also reports on the
amount of overhead required by a cache.

sp_sysmon

Reports statistics useful for tuning cache configuration, including cache
spinlock contention, cache utilization, and disk 1/O patterns.

For afull description of configuring named caches and binding objectsto

caches, see the System Administration Guide. Only a System

Administrator can configure named caches and bind database objects to

them.

Tuning named caches

306

Creating named data caches and memory pools, and binding databases and
database objectsto the caches, can dramatically hurt or improve Adaptive

Server performance. For example:

* A cachethat ispoorly used hurts performance.

If you allocate 25% of your data cache to a database that services a
very small percentage of the query activity on your server, 1/0

increases in other caches.

e A pool that is unused hurts performance.

If you add a 16K pool, but none of your queries useit, you have taken

space away from the 2K pool. The 2K pool’s cache hit ratio is
reduced, and I/O isincreased.

CHAPTER 14 Memory Use and Performance

A pool that is overused hurts performance.

If you configureasmall 16K pool, and virtually all of your queriesuse
it, 1/0 rates are increased. The 2K cache will be under-used, while
pages are rapidly cycled through the 16K pool. The cache hit ratioin
the 16K pool will be very poor.

When you balance your poal utilization within a cache, performance
can increase dramatically.

Both 16K and 2K queries experience improved cache hit ratios. The
large number of pages often used by queries that perform 16K /O do
not flush 2K pages from disk. Queries using 16K will perform
approximately one-eighth the number of 1/Os required by 2K |/O.

When tuning named caches, always measure current performance, make
your configuration changes, and measure the effects of the changes with
similar workload.

Cache configuration goals

Goalsfor configuring caches are:

Reduced contention for spinlocks on multiple engine servers.

Improved cache hit ratios and/or reduced disk 1/0. As abonus,
improving cache hit ratios for queries can reduce lock contention,
since queries that do not need to perform physical 1/0 usually hold
locks for shorter periods of time.

Fewer physical reads, due to the effective use of large I/O.

Fewer physical writes, because recently modified pages are not being
flushed from cache by other processes.

Reduced cache overhead and reduced CPU bus latency on SMP
systems, when relaxed LRU policy is appropriately used.

Reduced cache spinlock contention on SMP systems, when cache
partitions are used.

In addition to commands such as showplan and statistics io that help tune

on a per-query basis, you need to use a performance monitoring tool such
as sp_sysmon to look at the complex picture of how multiple queries and
multiple applications share cache space when they are run simultaneously.

307

Configuring the data cache to improve performance

Gather data, plan, and then implement

308

Thefirst step in developing a plan for cache usage isto provide as much
memory as possible for the data cache;

e Determine the maximum amount of memory you can allocate to
Adaptive Server. Set 'max memory' configuration parameter to that
value.

e Oncedl the configuration parameters that use Adaptive Server
memory have been configured, the difference between the 'max
memory' and run value of 'total logical memory' is the memory
available for additional configuration and/or for data/procedure
caches. If you have sufficiently configured all the other configuration
parameters, you can chooseto allocate this additional memory to data
caches. Note that configuration of a data cache requires a reboot.

e Notethat if you allocate al the additional memory to data caches,
there may not be any memory available for reconfiguration of other
configuration parameters. However, if there is additional memory
available in your system, 'max memory' value can be increased
dynamically and other dynamic configuration parameters like
'procedure cache size', 'user connections, etc., can be increased.

« Useyour performance monitoring tools to establish baseline
performance, and to establish your tuning goals.

Determine the size of memory you can allocate to data caches as
mentioned in the above steps. Include the size of already configured
cache(s), like the default data cache and any named cache(s).

Decide the data caches's size by looking at existing objects and
applications. Note that addition of new caches or increase in configuration
parameters that consume memory does not reduce the size of the default
data cache. Once you have decided the memory available for data caches
and sizeof eachindividual cache, add new cachesand increase or decrease
size of existing data caches.

e Evaluate cache needs by analyzing I/O patterns, and eval uate pool
needs by analyzing query plansand 1/0 statistics.

e Configure the easiest choices that will gain the most performance
first:

* Choose asizefor atempdb cache.

e Choose asizefor any log caches, and tune the log 1/0 size.

CHAPTER 14 Memory Use and Performance

¢ Choose asize for the specific tables or indexes that you want to
keep entirely in cache.

e Addlarge |/O poolsfor index or data caches, as appropriate.

¢ Once these sizes are determined, examine remaining 1/O patterns,
cache contention, and query performance. Configure caches
proportional to 1/0O usage for objects and databases.

Keep your performance goalsin mind as you configure caches:

e If your major goal in configuring cachesis to reduce spinlock
contention, increasing the number of cache partitionsfor heavily-used
caches may be the only step.

Moving afew high-1/O objects to separate caches also reduces the
spinlock contention and improves performance.

e If your major goal istoimprove responsetime by improving cache hit
ratios for particular queries or applications, creating caches for the
tables and indexes used by those queries should be guided by a
thorough understanding of the access methods and 1/0 requirements.

Evaluating cache needs

Generally, your goal isto configure cachesin proportion to the number of
times that the pages in the caches will be accessed by your queries and to
configure pools within caches in proportion to the number of pages used
by queries that choose 1/0 of that pool’s size.

If your databases and their logs are on separate logical devices, you can
estimate cache proportions using sp_sysmon or operating system
commands to examine physical I/O by device.

See “Disk 1/0 management” on page 994 for information about the
sp_sysmon output showing disk 1/O.

Large I/O and performance

You can configure the default cache and any named caches you create for
large I/O by splitting a cache into pools. The default 1/0 sizeis 2K, one
Adaptive Server data page.

309

Configuring the data cache to improve performance

310

For queries where pages are stored and accessed sequentially, Adaptive
Server reads up to eight data pagesin asingle I/O. Since the magjority of
I/O timeis spent doing physical positioning and seeking on thedisk, large
I/0 can greatly reduce disk access time. In most cases, you want to
configure a 16K pooal in the default data cache.

Certain types of Adaptive Server queries are likely to benefit from large
1/O. Identifying these types of queries can help you determine the correct
size for data caches and memory poals.

In the following examples, either the database or the specific table, index
or LOB page change (used for, text, image, and Java off-row columns)
must be bound to a named data cache that has large memory pools, or the
default data cache must have large I/O pools. Types of queries that can
benefit from large 1/0 include:

e Queriesthat scan entire tables. For example:

select title_id, price fromtitles
select count(*) from authors
where state = "CA" /* no index on state */

* Range queries on tables with clustered indexes. For example:
wher e i ndexed_col nane >= val ue

e Queriesthat scan the leaf level of an index, both matching and non-
matching scans. If there is a nonclustered index on type, price, this
query could use large 1/0O on the leaf level of theindex, since all the
columns used in the query are contained in the index:

select type, sum(price)
fromtitles

group by type

e Queriesthat join entiretables, or large portions of tables. Different I/O
sizes may be used on different tablesin ajoin.

¢ Queriesthat select text or image or Java off-row columns. For
example:

select au_id, copy from bl urbs
* Queriesthat generate Cartesian products. For example:

select title, au_lnane
fromtitles, authors

CHAPTER 14 Memory Use and Performance

This query needs to scan all of one table, and scan the other table
completely for each row from the first table. Caching strategies for
these queries follow the same principles as for joins.

¢ Queriessuch as select into that allocate large numbers of pages.
e create index commands.
¢ Bulk copy operations on heaps—both copy in and copy out.

¢ Theupdate statistics, dbcc checktable, and dbcc checkdb commands.

The optimizer and cache choices

If the cache for atable or index has a 16K pool, the optimizer decides on
thel/O sizeto usefor dataand leaf-level index pages based on the number
of pages that need to be read and the cluster ratios for the table or index.

The optimizer’'s knowledge is limited to the single query it is analyzing
and to statistics about the table and cache. It does not have information
about how many other queries are simultaneously using the same data
cache. It aso has no statistics on whether table storage is fragmented in
such away that large 1/0s or asynchronous prefetch would be less
effective.

In some cases, this combination of factors can lead to excessive |I/O. For
example, users may experience higher I/O and poor performance if
simultaneous queries with large result sets are using avery small memory
pool.

Choosing the right mix of I/O sizes for a cache

You can configure up to four poolsin any data cache, but, in most cases,

cachesfor individual objects perform best with only a2K pool and a 16K
pooal. A cachefor adatabase where the log isnot bound to a separate cache
should also have apool configured to match thelog 1/0 size configured for
the database; often the best log 1/0 sizeis 4K.

311

Configuring the data cache to improve performance

Reducing spinlock contention with cache partitions

Asthe number of engines and tasks running on an SMP system increases,
contention for the spinlock on the data cache can also increase. Any time
atask needsto access the cache to find apage in cache or to relink apage
on the LRU/MRU chain, it holdsthe cache spinlock to prevent other tasks
from modifying the cache at the sametime.

With multiple engines and users, tasks wind up waiting for access to the
cache. Adding cache partitions separates the cache into partitions that are
each protected by its own spinlock. When a page needs to be read into
cache or located, a hash function is applied to the database | D and page |ID
to identify which partition holds the page.

The number of cache partitionsis aways a power of 2. Eachtimeyou
increase the number of partitions, you reduce the spinlock contention by
approximately 1/2. If spinlock contention is greater than 10 to 15%,
consider increasing the number of partitions for the cache. This example
creates 4 partitions in the default data cache:

sp_cacheconfig "default data cache",
"cache_partition=4"

You must reboot the server for changesin cache partitioning to take effect.

For more information on configuring cache partitions, see the System
Administration Guide.

For information on monitoring cache spinlock contention withsp_sysmon,
see “ Cache spinlock contention” on page 981.

Each pool in the cacheis partitioned into a separate LRU/MRU chain of
pages, with its own wash marker.

Cache replacement strategies and policies

312

The Adaptive Server optimizer uses two cache replacement strategiesto
keep frequently used pages in cache while flushing the less frequently
used pages. For some caches, you may want to consider setting the cache
replacement policy to reduce cache overhead.

CHAPTER 14 Memory Use and Performance

Strategies

Policies

Repl acement strategies determine where the pageis placed in cache when
it isread from disk. The optimizer decides on the cache replacement
strategy to be used for each query. The two strategies are:

» Fetch-and-discard, or MRU replacement, strategy links the newly
read buffers at the wash marker in the pool.

* LRU replacement strategy links newly read buffers at the most-
recently used end of the pool.

Cache replacement strategies can affect the cache hit ratio for your query
mix:

» Pagesthat are read into cache with the fetch-and-discard strategy
remain in cache a much shorter time than queries read in at the MRU
end of the cache. If such a page is needed again (for example, if the
same query is run again very soon), the pages will probably need to
be read from disk again.

» Pagesthat are read into cache with the fetch-and-discard strategy do
not displace pages that already reside in cache before the wash
marker. This means that the pages already in cache before the wash
marker will not be flushed out of cache by pagesthat are needed only
once by a query.

See “ Specifying the cache strategy” on page 421 and “ Controlling large
I/O and cache strategies’ on page 422 for information on specifying the
cache strategy in queries or setting values for tables.

A System Administrator can specify whether a cache is going to be
maintained as an MRU/LRU-linked list of pages (strict) or whether
relaxed LRU replacement policy can be used. The two replacement
policies are:

e Strict replacement policy replaces the least recently used page in the
pooal, linking the newly read page(s) at the beginning (MRU end) of
the page chain in the pool.

¢ Relaxed replacement policy attempts to avoid replacing a recently
used page, but without the overhead of keeping buffersin LRU/MRU
order.

313

Named data cache recommendations

The default cache replacement policy is strict replacement. Relaxed
replacement policy should be used only when both of these conditions are
true:

e Thereislittle or no replacement of buffersin the cache.
e Thedataisnot updated or is updated infrequently.

Relaxed LRU policy saves the overhead of maintaining the cachein
MRU/LRU order. On SMP systems, where copies of cached pages may
reside in hardware caches on the CPUs themselves, relaxed LRU policy
can reduce bandwidth on the bus that connects the CPUs.

If you have created a cacheto hold all, or most of, certain objects, and the
cache hit rateis above 95%, using relaxed cache replacement policy for
the cache can improve performance slightly.

See the System Administration Guide for more information.

Configuring relaxed LRU Replacement for database logs

Log pages arefilled with log records and are immediately written to disk.
When applications include triggers, deferred updates or transaction
rollbacks, some log pages may be read, but usually they are very recently
used pages, which are still in the cache.

Since accessing these pages in cache moves them to the MRU end of a
strict-replacement policy cache, log caches may perform better with
relaxed LRU replacement.

Relaxed LRU replacement for lookup tables and indexes

User-defined caches that are sized to hold indexes and frequently used
lookup tables are good candidatesfor relaxed LRU replacement. If acache
isagood candidate, but you find that the cache hit ratio is slightly lower
than the performance guideline of 95%, determine whether slightly
increasing the size of the cache can provide enough space to completely
hold the table or index.

Named data cache recommendations

These cache recommendations can improve performance on both single
and multiprocessor servers:

314

CHAPTER 14 Memory Use and Performance

Adaptive Server writes log pages according to the size of the logical
page size. Larger log pages potentially reduce the rate of commit-
sharing writes for log pages.

Commit-sharing occurs when, instead of performing many individual
commits, Adaptive Server waits until it can perform a batch of
commits at one time. Per-process user log caches are sized according
to the logical page size and the user log cache size configuration
parameter. The default size of the user log cache is one logical page.

For transactions generating many log records, the time required to
flush the user log cacheis dlightly higher for larger logical page sizes.
However, becausethelog-cache sizesare also larger, Adaptive Server
does not need to perform as many log-cache flushes to the log page
for long transactions.

See the Utilities Guide for specific information.

Create anamed cache for tempdb and configure the cachefor 16K 1/0
for use by select into queries and sorts.

Create a named cache for the logs for your high-use databases.
Configure poolsin this cache to match the log 1/0 size set with
sp_logiosize.

See “Choosing the I/O size for the transaction log” on page 318.

If atableor itsindex is small and constantly in use, create a cachefor
just that object or for afew objects.

For caches with cache hit ratios of more than 95%, configure relaxed
LRU cache replacement policy if you are using multiple engines.

Keep cache sizes and pool sizes proportional to the cache utilization
objects and queries:

e If 75% of the work on your server is performed in one database,
that database should be allocated approximately 75% of the data
cache, in acache created specifically for the database, in caches
created for its busiest tables and indexes, or in the default data
cache.

e If approximately 50% of the work in your database can uselarge
1/O, configure about 50% of the cache in a 16K memory pool.

It is better to view the cache as a shared resource than to try to
micromanage the caching needs of every table and index.

315

Named data cache recommendations

Start cache analysisand testing at the database level, concentrating on
particular tables and objects with high 1/O needs or high application
priorities and those with special uses, such astempdb and transaction
logs.

e On SMP servers, use multiple caches to avoid contention for the
cache spinlock:

Use a separate cache for the transaction log for busy databases,
and use separate caches for some of the tables and indexes that
are accessed frequently.

If spinlock contention is greater than 10% on a cache, split it into
multiple caches or use cache partitions.

Use sp_sysmon periodically during high-usage periods to check
for cache contention.

See “Cache spinlock contention” on page 981.

Set relaxed LRU cache policy on caches with cache hit ratios of
more than 95%, such as those configured to hold an entire table
or index.

Sizing caches for special objects, tempdb, and transaction logs

Creating caches for tempdb, the transaction logs, and for afew tables or
indexes that you want to keep completely in cache can reduce cache
spinlock contention and improve cache hit ratios.

Determining cache sizes for special tables or indexes

You can use sp_spaceused to determine the size of the tables or indexes
that you want to keep entirely in cache. If you know how fast these tables
increase in size, allow some extra cache space for their growth. To seethe
size of all theindexesfor atable, use:

sp_spaceused tabl e_nane, 1

Examining cache needs for tempdb

Look at your use of tempdb:

« Estimatethesize of thetemporary tables and worktables generated by
your queries.

316

CHAPTER 14 Memory Use and Performance

L ook at the number of pages generated by select into queries.

These queriescan use 16K 1/0, so you can usethisinformationto help
you size a 16K pool for the tempdb cache.

e Estimatetheduration (inwall-clock time) of the temporary tables and
worktables.

¢ Estimate how often queries that create temporary tables and
worktables are executed.

Try to estimate the number of simultaneous users, especially for
queries that generate very large result setsin tempdb.

With thisinformation, you can aform arough estimate of the amount of
simultaneous I/0 activity in tempdb. Depending on your other cache

needs, you can choose to size tempdb so that virtually all tempdb activity
takes placein cache, and few temporary tablesare actually written to disk.

In most cases, the first 2MB of tempdb are stored on the master device,
with additional space on another logical device. You can usesp_sysmon to
check those devices to help determine physical 1/0 rates.

Examining cache needs for transaction logs

On SMP systems with high transaction rates, binding the transaction log
to its own cache can greatly reduce cache spinlock contention in the
default data cache. In many cases, the log cache can be very small.

The current page of the transaction log iswritten to disk when transactions
commit, so your objective in sizing the cache or pool for the transaction
log is not to avoid writes. Instead, you should try to size the log to reduce
the number of times that processes that need to reread log pages must go
to disk because the pages have been flushed from the cache.

Adaptive Server processes that need to read log pages are:

» Triggersthat usetheinserted and deleted tables, which are built from
the transaction log when the trigger queries the tables

» Deferred updates, deletes, and inserts, since these require rereading
the log to apply changes to tables or indexes

» Transactionsthat arerolled back, sincelog pages must be accessed to
roll back the changes

When sizing a cache for atransaction log:

» Examine the duration of processes that need to reread log pages.

317

Named data cache recommendations

Estimate how long the longest triggers and deferred updates last.

If some of your long-running transactions are rolled back, check the
length of time they ran.

« Estimate the rate of growth of the log during this time period.

You can check your transaction log size with sp_spaceused at regular
intervals to estimate how fast the log grows.

Use thislog growth estimate and the time estimate to size the log cache.
For example, if the longest deferred update takes 5 minutes, and the
transaction log for the database grows at 125 pages per minute, 625 pages
are alocated for the log while this transaction executes.

If afew transactions or queries are especially long-running, you may want
to size the log for the average, rather than the maximum, length of time.

Choosing the I/O size for the transaction log

318

When auser performs operations that requirelogging, log records are first
storedin a*“user log cache” until certain eventsflush the user’slog records
to the current transaction log page in cache. Log records are flushed:

* When atransaction ends
e Whenthe user log cache is full
* When the transaction changes tables in another database

* When another process needsto write a pagereferenced in the user log
cache

e At certain system events

To economize on disk writes, Adaptive Server holds partially filled
transaction log pagesfor avery brief span of time so that records of several
transactions can be written to disk simultaneously. This processis caled
group commit.

In environments with high transaction rates or transactions that create
large log records, the 2K transaction log pagesfill quickly, and alarge
proportion of log writes are due to full log pages, rather than group
commits.

Creating a4K pool for the transaction log can greatly reduce the number
of log writesin these environments.

CHAPTER 14 Memory Use and Performance

sp_sysmon reports on the ratio of transaction log writesto transaction log
allocations. You should try using 4K log /O if all of these conditions are
true:

¢ Your databaseisusing 2K log I/O.
¢ The number of log writes per second is high.
e Theaverage number of writes per log page is slightly above one.

Here is some sample output showing that alarger log 1/0 size might help
performance;

per sec per xact count % of total
Transaction Log Wites 22.5 458. 0 1374 n/ a
Transaction Log Alloc 20.8 423.0 1269 n/ a
Avg # Wites per Log Page n/ a n/ a 1.08274 n/ a

See “Transaction log writes” on page 951 for more information.

Configuring for large log I/O size

Thelog /0O sizefor each databaseisreported in the server’serror log when
Adaptive Server starts. You can also use sp_logiosize.

To see the size for the current database, execute sp_logiosize with no
parameters. To seethe size for all databases on the server and the cachein
use by the log, use:

sp_l ogi osi ze "al I "

To set thelog 1/0 size for a database to 4K, the default, you must be using
the database. This command sets the size to 4K:

sp_l ogi osi ze "defaul t"

By default, Adaptive Server setsthelog /O size for user databasesto 4K.
If no 4K pool is available in the cache used by the log, 2K 1/0 is used
instead.

If adatabase is bound to acache, al objects not explicitly bound to other
caches use the database’s cache. Thisincludes the syslogs table.

To bind syslogs to another cache, you must first put the database in single-
user mode, with sp_dboption, and then use the database and execute
sp_bindcache. Here isan example:

sp_bi ndcache pubs_l og, pubtune, syslogs

319

Named data cache recommendations

Additional tuning tips for log caches

For further tuning after configuring a cache for the log, check sp_sysmon
output. Look at the output for:

e The cache used by thelog
e Thedisk thelogisstored on
e Theaverage number of writes per log page

When looking at the log cache section, check “ Cache Hits” and “ Cache
Misses’ to determine whether most of the pages needed for deferred
operations, triggers, and rollbacks are being found in cache.

In the “Disk Activity Detail” section, look at the number of “Reads’
performed to see how many times tasks that need to reread the log had to
access the disk.

Basing data pool sizes on query plans and I/O

320

Divide acacheinto pool s based on the proportion of the I/O performed by
your queries that use the corresponding 1/O sizes. If most of your queries
can benefit from 16K 1/O, and you configure avery small 16K cache, you
may see worse performance.

Most of the spacein the 2K pool remains unused, and the 16K pool
experiences high turnover. The cache hit ratio is significantly reduced.

The problem is most severe with nested-loop join queries that have to
repeatedly reread the inner table from disk.

Making a good choice about pool sizes requires:

« Knowledge of the application mix and the 1/O size your queries can
use

e Careful study and tuning, using monitoring toolsto check cache
utilization, cache hit rates, and disk I/0

CHAPTER 14 Memory Use and Performance

Checking I/O size for queries

You can examine query plansand I/O statisticsto determine which queries
are likely to perform large 1/O and the amount of 1/0 those queries
perform. Thisinformation can form the basisfor estimating the amount of
16K 1/O the queries should perform with a 16K memory pool. I/Os are
doneintermsof logical pagesizes, if it usesthe 2K pageit retrievesin 2K
sizes, if 8K it retrievesin the 8K size, as shown:

Logical page size Memory pool
2K 16K

4K 64K

8K 128K

16K 256K

Another example, a query that scans a table and performs 800 physical
I/Osusing a 2K pool should perform about 100 8K 1/Os.

See “Large I/0 and performance” on page 309 for alist of query types.

Totest your estimates, you need to actually configure the poolsand run the
individual queries and your target mix of queriesto determine optimum
pooal sizes. Choosing agood initial size for your first test using 16K 1/0
depends on a good sense of the types of queriesin your application mix.

Thisestimateis especially important if you are configuring a16K pool for
the first time on an active production server. Make the best possible
estimate of simultaneous uses of the cache.

Some guidelines:

¢ If most I/O occursin point queries using indexes to access a small
number of rows, make the 16K pool relatively small, say about 10 to
20% of the cache size.

¢ If you estimate that alarge percentage of the I/Os will use the 16K
pool, configure 50 to 75% of the cache for 16K 1/O.

Queriesthat use 16K /O include any query that scansatable, usesthe
clustered index for range searches and order by, and queries that
perform matching or nonmatching scans on covering nonclustered
indexes.

e Ifyouarenot sureabout thel/O size that will be used by your queries,
configure about 20% of your cache spacein a16K pool, and use
showplan and statistics i/o while you run your queries.

321

Named data cache recommendations

322

Examine the showplan output for the “Using 16K 1/O” message.
Check statistics i/o output to see how much /O is performed.

If you think that your typical application mix uses both 16K /O and
2K 1/0 simultaneously, configure 30 to 40% of your cache space for
16K 1/0.

Your optimum may be higher or lower, depending on the actual mix
and the I/O sizes chosen by the query.

If many tables are accessed by both 2K 1/0 and 16K 1/0O, Adaptive
Server cannot use 16K |/O, if any page from the extent isin the 2K
cache. It performs 2K /O on the other pages in the extent that are
needed by the query. This adds to the I/O in the 2K cache.

After configuring for 16K 1/O, check cache usage and monitor the I/O for
the affected devices, using sp_sysmon or Adaptive Server Monitor. Also,
use showplan and statistics io to observe your queries.

L ook for nested-loop join querieswhere an inner table would use 16K
1/0, and the table is repeatedly scanned using the fetch-and-discard
(MRU) strategy.

This can occur when neither table fits completely in cache. If
increasing the size of the 16K pool allows the inner tableto fit
completely in cache, 1/0 can be significantly reduced. You might also
consider binding the two tables to separate caches.

Look for excessive 16K 1/0, when compared to table size in pages.

For example, if you have an 8000-pagetable, and a16K |/O table scan
performssignificantly morethan 1000 |/Osto read thistable, you may
see improvement by re-creating the clustered index on this table.

Look for timeswhen large /0O is denied. Many times, thisis because
pages are already in the 2K pool, so the 2K pool will be used for the
rest of the 1/O for the query.

For acomplete list of the reasons that large 1/0O cannot be used, see
“When prefetch specification is not followed” on page 420.

CHAPTER 14 Memory Use and Performance

Configuring buffer wash size

You can configure the wash areafor each pool in each cache. If you set the
wash sizeis set too high, Adaptive Server may perform unnecessary
writes. If you set thewash areatoo small, Adaptive Server may not be able
to find a clean buffer at the end of the buffer chain and may have to wait
for 1/0 to complete beforeit can proceed. Generally, wash size defaultsare
correct and need to be adjusted only inlarge poolsthat have very high rates
of data modification.

Adaptive Server alocates buffer poolsin units of logical pages. For
example, on aserver using 2K logical pages, 8VIB are allocated to the
default data cache. By default this constitutes approximately 4096 buffers.

If you allocated the same 8M B for the default data cache on aserver using
a 16K logical page size, the default data cache is approximately 512
buffers. On abusy system, this small number of buffers might result in a
buffer always being in the wash region, causing a slowdown for tasks
requesting clean buffers.

In general, to obtain the same buffer management characteristics on larger
page sizes as with 2K logical page sizes, you should scale the size of the
cachesto the larger page size. In other words, if you increase your logical
page size by four times, your cache and pool sizes should be about four
times larger as well.

Queries performing large 1/0, extent- based reads and writes, and so on,
benefit from the use of larger logical page sizes. However, as catalogs
continue to be page-locked, thereis greater contention and blocking at the
page level on system catal ogs.

Row and column copying for DOL tableswill result in agreater slowdown
when used for wide columns. Memory all ocation to support widerowsand
wide columns will marginally slow the server.

See the System Administration Guide for more information.

Overhead of pool configuration and binding objects

Configuring memory pools and binding objects to caches can affect users
on a production system, so these activities are best performed during off-
hours.

323

Named data cache recommendations

Pool configuration overhead

When a pool is created, deleted, or changed, the plans of all stored
procedures and triggersthat use objects bound to the cache are recompiled
the next time they are run. If adatabase is bound to the cache, this affects
all of the objectsin a database.

Thereisadlight amount of overhead involved in moving buffers between
pools.

Cache binding overhead

324

When you bind or unbind an object, all the object’s pagesthat are currently
in the cache are flushed to disk (if dirty) or dropped from the cache (if
clean) during the binding process.

The next timethe pages are needed by user queries, they must beread from
the disk again, dowing the performance of the queries.

Adaptive Server acquires an exclusive lock on the table or index while the
cache is being cleared, so binding can slow access to the object by other
users. Thebinding process may haveto wait until transactions completeto
acquire the lock.

Note The fact that binding and unbinding objects from caches removes
them from memory can be useful when tuning queries during development
and testing.

If you need to check physical I/O for a particular table, and earlier tuning
efforts have brought pagesinto cache, you can unbind and rebind the
object. The next time the table is accessed, all pages used by the query
must be read into the cache.

The plansof all stored procedures and triggers using the bound objects are
recompiled the next time they are run. If a database is bound to the cache,
this affects all the objects in the database.

CHAPTER 14 Memory Use and Performance

Maintaining data cache performance for large 1/0O

When heap tables, clustered indexes, or nonclustered indexes have just
been created, they show optimal performance when large I/O is being
used. Over time, the effects of deletes, page splits, and page deallocation
and reallocation can increase the cost of 1/0. optdiag reports a statistic
called “Large 1/0O efficiency” for tables and indexes.

Whenthisvalueis 1, or closeto 1, large /O isvery efficient. Asthevalue
drops, more I/O is required to access data pages needed for a query, and
large I/O may be bringing pages into cache that are not needed by the
query.

You need to consider rebuilding indexes when large I/O efficiency drops
or activity in the pool increases dueto increased 16K 1/0.

When large I/O efficiency drops, you can:

* Runreorg rebuild on tables that use data-only-locking. You can also
use reorg rebuild on the index of data-only-locked tables.

» For alpages-locked tables, drop and re-create the indexes.

For moreinformation, see“Running reorg on tables and indexes’ on page
357.

Diagnosing excessive I/O Counts

There are several reasons why a query that performslarge I/0 might
require more reads than you anticipate:

» Thecacheused by the query hasa 2K cache and other processes have
brought pages from the table into the 2K cache.

If Adaptive Server findsthat one of the pagesit would read using 16K
I/Osalready inthe 2K cache, it performs 2K /O on the other pagesin
the extent that are required by the query.

» Thefirst extent on each allocation unit stores the all ocation page, so
if aquery needsto accessall 255 pages on the extent, it must perform
2K 1/0 on the 7 pages that share the extent with the allocation page.

The other 31 extents can be read using 16K 1/0. So, the minimum
number of reads for an entire allocation unit is aways 38, not 32.

325

Speed of recovery

In nonclustered indexes and clustered indexes on data-only-locked
tables, an extent may store both leaf-level pages and pages from
higher levels of theindex. 2K 1/0 is performed on the higher level s of
indexes, and for leaf-level pages when few pages are needed by a
query.

When a covering leaf-level scan performs 16K 1/0, it islikely that
some of the pages from some extentswill beinthe 2K cache. Therest
of the pagesin the extent will be read using 2K 1/O.

Using sp_sysmon to check large 1/0O performance

The sp_sysmon output for each data cache includes information that can
help you determine the effectiveness for large 1/0s:

Speed of recovery

326

“Large I/O usage” on page 987 reports the number of large 1/0s
performed and denied and provides summary statistics.

“Large 1/O detail” on page 988 reports the total number of pages that
were read into the cache by alarge 1/0 and the number of pages that
were actually accessed while they were in the cache.

Asusers modify datain Adaptive Server, only the transaction log is
written to disk immediately, to ensure that given data or transactions can
be recovered. The changed or “dirty” dataand index pages stay in the data
cache until one of these events causes them to be written to disk:

The checkpoint process wakes up, determines that the changed data
and index pages for a particular database need to be written to disk,
and writes out all the dirty pages in each cache used by the database.

The combination of the setting for recovery interval and therate of data
modifications on your server determine how often the checkpoint
process writes changed pages to disk.

As pages move into the buffer wash area of the cache, dirty pagesare
automatically written to disk.

CHAPTER 14 Memory Use and Performance

Adaptive Server has spare CPU cyclesand disk 1/O capacity between
user transactions, and the housekeeper task uses thistime to write
dirty buffersto disk.

Recovery happens only on the default data cache.

A user issues a checkpoint command.

The combination of checkpoints, the housekeeper, and writes started at the
wash marker has these benefits:

Many transactions may change apagein the cache or read the pagein
the cache, but only one physical write is performed.

Adaptive Server performs many physical writesat timeswhenthel/O
does not cause contention with user processes.

Tuning the recovery interval

The default recovery interval in Adaptive Server is five minutes per
database. Changing the recovery interval can affect performance because
it can impact the number of times Adaptive Server writes pagesto disk.

Table 14-2 shows the effects of changing the recovery interval from its
current setting on your system.

Table 14-2: Effects of recovery interval on performance and
recovery time

Setting Effects on performance Effects on recovery

Lower May cause more reads and writesand may lower Recovery period will be very short.
throughput. Adaptive Server will write dirty
pagesto the disk more often. Any checkpoint I/0
“spikes’ will be smaller.

Higher Minimizes writes and improves system Automatic recovery may take moretime

throughput. Checkpoint 1/0 spikes will be on start-up. Adaptive Server may have

higher.

to reapply alarge number of transaction
log records to the data pages.

See the System Administration Guide for information on setting the
recovery interval. sp_sysmon reports the number and duration of
checkpoints.

See “Recovery management” on page 990.

327

Auditing and performance

Effects of the housekeeper task on recovery time

Adaptive Server's housekeeper task automatically begins cleaning dirty

buffers during the server’'sidle cycles. If thetask isableto flush all active
buffer poolsin all configured caches, it wakes up the checkpoint process.
This may result in faster checkpoints and shorter database recovery time.

System Administrators can use the housekeeper free write percent
configuration parameter to tune or disable the housekeeper task. This
parameter specifies the maximum percentage by which the housekeeper
task can increase database writes.

For moreinformation on tuning the housekeeper and therecovery interval,
see “ Recovery management” on page 990.

Auditing and performance

Heavy auditing can affect performance as follows:

e Audit records are written first to a queue in memory and then to the
sybsecurity database. If the database shares a disk used by other busy
databases, it can slow performance.

e |f thein-memory audit queuefillsup, the user processesthat generate
audit records sleep. See Figure 14-4 on page 329.

Sizing the audit queue

The size of the audit queue can be set by a System Security Officer. The
default configuration is as follows:

e A singleaudit record requires a minimum of 32 bytes, upto a
maximum of 424 bytes.

This means that a single data page stores between 4 and 80 records.

* Thedefault size of the audit queue is 100 records, requiring
approximately 42K.

The minimum size of the queue is 1 record; the maximum size is
65,335 records.

There are trade-offs in sizing the audit queue, as shown in Figure 14-4.

328

CHAPTER 14 Memory Use and Performance

If the audit queue islarge, so that you do not risk having user processes
sleep, you run the risk of losing any audit recordsin memory if thereisa
system failure. The maximum number of records that can be lost isthe
maximum number of records that can be stored in the audit queue.

If security isyour chief concern, keep the queue small. If you can risk the
loss of more audit records, and you require high performance, make the
gueue larger.

Increasing the size of the in-memory audit queue takes memory from the
total memory allocated to the data cache.

Figure 14-4: Trade-offs in auditing and performance

If the audit queue is full,
’— this process will sleep until
If the system crashes,

ij space is available
} f these records are lost
5 ppmEE I,\'

Audit]
record Audit queue size

sysaudits

Auditing performance guidelines

e Heavy auditing slows overall system performance. Audit only the
events you need to track.

e If possible, place the sysaudits database on its own device. If that is
not possible, placeit on adevicethat isnot used for your most critical
applications.

329

Auditing and performance

330

charTER 15 Determining Sizes of Tables and
Indexes

This chapter explains how to determine the current sizes of tables and
indexes and how to estimate table size for space planning.

It contains the following sections:

Topic Page
Why Object Sizes Are Important to Query Tuning 331
Tools for Determining the Sizes of Tables and Indexes 332
Effects of Data M odifications on Object Sizes 333
Using optdiag to Display Object Sizes 333
Using sp_spaceused to Display Object Size 334
Using sp_estspace to Estimate Object Size 336
Using Formulas to Estimate Object Size 338

Why Object Sizes Are Important to Query Tuning

Knowing the sizes of your tables and indexesis important to
understanding query and system behavior. At several stages of tuning
work, you need size datato:

¢ Understand statistics io reports for a specific query plan. Chapter 33,
“Using Statistics to Improve Performance,” describes how to use
statistics io to examine the I/O performed.

¢ Understand the optimizer’s choice of query plan. Adaptive Server's
cost-based optimizer estimates the physical and logical 1/0 required
for each possible access method and chooses the cheapest method. If
you think aparticular query plan is unusual, you can used dbcc
traceon(302) to determine why the optimizer madethe decision. This
output includes page humber estimates.

331

Tools for Determining the Sizes of Tables and Indexes

Determine object placement, based on the sizes of database objects
and the expected 1/0 patterns on the objects. You can improve
performance by distributing database objects across physical devices
so that reads and writes to disk are evenly distributed. Object
placement is described in Chapter 5, “ Controlling Physical Data
Placement.”

Understand changes in performance. If objects grow, their
performance characteristics can change. One exampleisatablethatis
heavily used and isusually 100 percent cached. If that table growstoo
large for its cache, queries that access the table can suddenly suffer
poor performance. Thisisparticularly truefor joinsrequiring multiple
scans.

Do capacity planning. Whether you are designing a new system or
planning for growth of an existing system, you need to know the space
requirements in order to plan for physical disks and memory needs.

Understand output from Adaptive Server Monitor and from
sp_sysmon reports on physical 1/0.

Tools for Determining the Sizes of Tables and Indexes

Adaptive Server includes several tools that provide information on the
current sizes of tables or indexes or that can predict future sizes:

332

The utility program optdiag displays the sizes and many other
statisticsfor tables and indexes. For information on using optdiag, see
Chapter 36, “ Statistics Tables and Displaying Statistics with
optdiag.”

The system procedure sp_spaceused reports on the current size of an
existing table and any indexes.

The system procedure sp_estspace can predict the size of atable and
itsindexes, given anumber of rows as a parameter.

You can also compute table and index size using formulas provided in this
chapter. The sp_spaceused and optdiag commands report actual space
usage. The other methods presented in this chapter provide size estimates.
For partitioned tables, the system procedure sp_helpartition reports on the
number of pages stored on each partition of the table. See “ Getting
information about partitions” on page 98 for information.

CHAPTER 15 Determining Sizes of Tables and Indexes

Effects of Data Modifications on Object Sizes

Over time, the effects of randomly distributed data modifications on a set
of tables tends to produce data pages and index pages that average
approximately 75 percent full. The major factors are:

* Whenyou insert arow that needs to be placed on a page of an
allpages-locked table with a clustered index, and there is no room on
the pagefor that row, the pageissplit, leaving two pagesthat are about
50 percent full.

* When you delete rows from heaps or from tables with clustered
indexes, the space used on the page decreases. You can have pages
that contain very few rows or even asingle row.

» After some deletes or page splits have occurred, inserting rowsinto
tableswith clustered indexestendsto fill up pagesthat have been split
or pages where rows have been deleted.

Page splits also take place when rows need to be inserted into full index
pages, so index pages also tend to average approximately 75% full, unless
you drop and recreate them periodically.

Using optdiag to Display Object Sizes

The optdiag command displays statistics for tables, indexes, and columns,
including the size of tables and indexes. If you are engaged in query
tuning, optdiag providesthe best tool for viewing all the statisticsthat you
need. Here is a sample report for the titles table in the pubtune database:

Tabl e owner: "dbo"

Statistics for table: "titles"
Dat a page count: 662
Enpty data page count: 10
Data row count: 4986. 0000000000000000
Forwar ded row count: 18. 0000000000000000
Del et ed row count: 87. 0000000000000000
Dat a page CR count: 86. 0000000000000000
OAM + al | ocati on page count: 5
First extent data pages: 3
Data row si ze: 238.8634175691937287

333

Using sp_spaceused to Display Object Size

See Chapter 36, “ Statistics Tables and Displaying Statistics with
optdiag,” for more information.

Advantages of optdiag
The advantages of optdiag are:

» optdiag candisplay statisticsfor al tablesin adatabase, or for asingle
table.

e optdiag output contains addition information useful for understanding
query costs, such asindex height and the average row length.

* optdiag isfrequently used for other tuning tasks, so you should have
these reports on hand.

Disadvantages of optdiag
The disadvantages of optdiag are:

e |t producesalot of output, so if you need only asingle piece of
information, such as the number of pagesin the table, other methods
are faster and have lower system overhead.

Using sp_spaceused to Display Object Size

The system procedure sp_spaceused reads values stored on an object’s
OAM page to provide a quick report on the space used by the object.

sp_spaceused titles
name rowtotal reserved dat a i ndex_size unused

titles 5000 1756 KB 1242 KB 440 KB 74 KB

The rowtotal value may be inaccurate at times; not all Adaptive Server
processes update this value on the OAM page. The commands update
statistics, dbcc checktable, and dbcc checkdb correct the rowtotal value on
the OAM page. Table 15-1 explainsthe headingsin sp_spaceused output.

334

CHAPTER 15 Determining Sizes of Tables and Indexes

Table 15-1: sp_spaceused output

Column Meaning

rowtotal Reports an estimate of the number of rows. Thevalueis
read from the OAM page. Though not always exact, this
estimate is much quicker and leads to less contention than
select count(*).

reserved Reports pages reserved for use by the table and itsindexes.
It includes both the used and unused pagesin extents
alocated to the objects. It isthe sum of data, index_size,

and unused.
data Reports the kilobytes on pages used by the table.
index_size Reports the total kilobytes on pages used by the indexes.
unused Reports the kilobytes of unused pages in extents allocated
to the object, including the unused pages for the object’s
indexes.

To report index sizes separately, use:

sp_spaceused titles, 1

i ndex_nane si ze reserved unused

title_id cix 14 KB 1294 KB 38 KB

title_ ix 256 KB 272 KB 16 KB

type_price_ix 170 KB 190 KB 20 KB
nane rowtotal reserved dat a i ndex_si ze unused
titles 5000 1756 KB 1242 KB 440 KB 74 KB

For clustered indexes on alpages-locked tables, the size value represents
the space used for the root and intermediate index pages. The reserved
value includes the index size and the reserved and used data pages.

The“1" in the sp_spaceused syntax indicates that detailed index
information should be printed. It has no relation to index IDs or other
information.

Advantages of sp_spaceused
The advantages of sp_spaceused are;

e It provides quick reports without excessive 1/0O and locking, sinceit
uses only values in the table and index OAM pages to return results.

335

Using sp_estspace to Estimate Object Size

e |t showsthe amount of space that is reserved for expansion of the
object, but not currently used to store data.

e It provides detailed reports on the size of indexes and of text and
image, and Java off-row column storage.

Disadvantages of sp_spaceused
The disadvantages of sp_spaceused are:
* It may report inaccurate counts for row total and space usage.

e Output isinkilobytes, while most query-tuning activities use pages as
aunit of measure.

Using sp_estspace to Estimate Object Size

sp_spaceused and optdiag report on actual space usage. sp_estspace can
help you plan for future growth of your tables and indexes. This procedure
uses information in the system tables (sysobjects, syscolumns, and
sysindexes) to determine the length of data and index rows. You provide a
table name, and the number of rows you expect to have in the table, and
sp_estspace estimatesthe size for the table and for any indexesthat exist.
It does not look at the actual size of the datain the tables.

To use sp_estspace:
e Createthetable, if it does not exist.
« Create any indexes on the table.

« Execute the procedure, estimating the number of rows that the table
will hold.

The output reportsthe number of pagesand bytesfor thetableand for each
level of the index.

The following example estimates the size of the titles table with 500,000
rows, a clustered index, and two nonclustered indexes:

sp_estspace titles, 500000
name type i dx_| evel Pages Kbyt es

titles dat a 0 50002 100004

336

CHAPTER 15 Determining Sizes of Tables and Indexes

title_id_cix
title_id_cix
title_id cix

title ix
title_ ix
title_ix
title_ix

type_price_ix
type_price_ix
type_price_ix
type_price_ix

Total _Moytes

title_id_cix
title_ix
type_price_ix

clustered

clustered

clustered

noncl ust er ed
noncl ust er ed
noncl ust er ed
noncl ust er ed
noncl ust er ed
noncl ust er ed
noncl ust er ed
noncl ust er ed

clustered
noncl ust er ed
noncl ust er ed

0 302 604
1 3 6
2 1 2
0 13890 27780
1 410 819
2 13 26
3 1 2
0 6099 12197
1 88 176
2 2 5
3 1 2

total _pages tine_mns

50308 250
14314 91
6190 55

sp_estspace also allows you to specify afillfactor, the average size of
variable-length fields and text fields, and the 1/O speed. For more
information, seein the Adaptive Server Reference Manual.

Note Theindex creation times printed by sp_estspace do not factor in the
effects of parallel sorting.

Advantages of sp_estspace
The advantages of using sp_estspace to estimate the sizes of objects are:

e sp_estspace provides aquick, easy way to perform initial capacity
planning and to plan for table and index growth.

e sp_estspace helpsyou estimate the number of index levels.

e sp_estspace can be used to estimate future disk space, cache space,
and memory requirements.

337

Using Formulas to Estimate Object Size

Disadvantages of sp_estspace

The disadvantages of using sp_estspace to estimate the sizes of objects
are:

e Returned sizesareonly estimates and may differ from actual sizesdue
to fillfactors, page splitting, actual size of variable-length fields, and
other factors.

e Index creation times can vary widely, depending on disk speed, the
use of extent 1/0 buffers, and system load.

Using Formulas to Estimate Object Size

Usetheformulasin this section to help you estimate the future sizes of the
tables and indexesin your database. The amount of overhead in each row
for tables and indexes that contain variable-length fields is greater than
tables that contain only fixed-length fields, so two sets of formulas are
required.

The processinvolves cal culating the number of bytes of dataand overhead
for each row, and dividing that number into the number of bytes available
on adata page. Each page requires some overhead, which limits the
number of bytes available for data:

« For dlpages-locked tables, page overhead is 32 bytes, leaving 2016
bytes available for data on a 2K page.

e For data-only-locked tables, 46 bytes, leaving 2002 bytes available
for data.

For the most accurate estimate, round down divisions that caculate the
number of rows per page (rows are never split across pages), and round up
divisions that calculate the number of pages.

Factors That Can Affect Storage Size

Using space management properties can increase the space needed for a
table or an index. See* Effects of Space Management Properties’ on page
352, and “max_rows_per_page” on page 353.

338

CHAPTER 15 Determining Sizes of Tables and Indexes

The formulasin this section use the maximum size for variable-length
character and binary data. To use the average size instead of the maximum
size, see “Using Average Sizes for Variable Fields’ on page 353.

If your tableincludestext orimage datatypes or Java off-row columns, use
16 (the size of the text pointer that is stored in the row) in your
calculations. Then see “LOB Pages’ on page 354 to see how to calculate
the storage space required for the actual text or image data.

Indexes on data-only-locked tables may be smaller than the formulas
predict due to two factors:

¢ Duplicate keys are stored only once, followed by alist of row IDsfor
the key.

e Compression of keys on non-leaf levels; only enough of the key to
differentiate from the neighboring keysis stored. Thisis especially
effective in reducing the size when long character keys are used.

If the configuration parameter page utilization percent is set to less than
100, Adaptive Server may allocate new extents before filling all pages on
the allocated extents. This does not change the number of pages used by
an object, but leaves empty pagesin the extentsall ocated to the object. See
in the System Administration Guide.

Storage Sizes for Datatypes
The storage sizes for datatypes are shown in Table 15-2:

339

Using Formulas to Estimate Object Size

Table 15-2: Storage sizes for Adaptive Server datatypes

Datatype Size

char Defined size

nchar Defined size* @@ncharsize

unichar n* @@unicharsize (@@unicharsize equals 2)
univarchar the actual number of characters* @@unicharsize
varchar Actua number of characters

nvarchar Actual number of characters* @@ncharsize
binary Defined size

varbinary Datasize

int 4

smallint 2

tinyint 1

float 4 or 8, depending on precision

double precision

8

real

4

numeric 2-17, depending on precision and scale
decimal 2-17, depending on precision and scale
money

smallmoney

datetime

smalldatetime

bit

|00~

text

16 bytes + 2K * number of pages used

image

16 bytes + 2K * number of pages used

timestamp

8

The storage size for anumeric or decimal column dependson its precision.
The minimum storage requirement is 2 bytes for a 1- or 2-digit column.
Storage size increases by 1 byte for each additional 2 digits of precision,
up to amaximum of 17 bytes.

Any columns defined as NUL L are considered variable-length columns,
since they involve the overhead associated with variable-length columns.

All calculations in the examples that follow are based on the maximum
sizefor varchar, univarchar, nvarchar, and varbinary data—the defined size
of the columns. They aso assume that the columns were defined as NOT
NULL. If you want to use average values instead, see “Using Average
Sizesfor Variable Fields” on page 353.

340

CHAPTER 15 Determining Sizes of Tables and Indexes

Tables and Indexes Used in the Formulas

The example illustrates the computations on a table that contains
9,000,000 rows:

¢ Thesum of fixed-length column sizesis 100 bytes.

e Thesum of variable-length column sizesis 50 bytes; there are 2
variable-length columns.

The table has two indexes:
¢ A clustered index, on afixed-length column, of 4 bytes
¢ A composite nonclustered index with these columns:

¢ A fixed length column, of 4 bytes

¢ A variable length column, of 20 bytes

Different formulas are needed for allpages-locked and data-only-locked
tables, since they have different amounts of overhead on the page and per
row:

e See“Calculating Table and Clustered Index Sizesfor Allpages-
Locked Tables’ on page 341 for tables that use allpages-locking.

e See“Calculating the Sizes of Data-Only-Locked Tables’ on page
347 for the formulas to use if tables that use data-only locking.

Calculating Table and Clustered Index Sizes for Allpages-Locked

Tables

Theformulasand examplesfor allpages-locked tablesare dividedinto two
sets of steps:

« Steps 1-6 outline the calculations for an allpages-locked table with a
clustered index, giving the table size and the size of the index tree.

e Steps 7-12 outline the calculations for computing the space required
by nonclustered indexes.

These formulas show how to calculate the sizes of tables and clustered
indexes. If your table does not have clustered indexes, skip steps 3, 4, and
5. Once you compute the number of data pages in step 2, go to step 6 to
add the number of OAM pages.

341

Using Formulas to Estimate Object Size

Step 1: Calculate the Data Row Size

Rowsthat store variable-length data require more overhead than rows that
contain only fixed-length data, so there are two separate formulas for
computing the size of a data row.

Fixed-Length Columns Only

Usethisformulaif the table contains only fixed-length columns, and all
are defined asNOT NULL.

Formula
4 (Overhead)
+ Sum of bytesin al fixed-length columns
= Datarow size

Some Variable-Length Columns
Usethisformulaif the table contains any variable-length columns or
columns that allow null values.

The table in the example contains variable-length columns, so the
computations are shown in the right column.

Formula Example
4 (Overhead) 4
Sum of bytesin al fixed-length columns + 100
Sum of bytesin al variable-length columns + 50
= Subtotal 154
(Subtotal / 256) + 1 (Overhead) 1
Number of variable-length columns + 1 3
2 (Overhead) 2
= Datarow size 160

Step 2: Compute the Number of Data Pages

Formula
2016 / Datarow size = Number of data rows per page
Number of rows/ Rows per page = Number of data pages required

342

CHAPTER 15 Determining Sizes of Tables and Indexes

Example
2016/ 160 = 12 datarows per page
9,000,000/ 12 = 750,000 data pages

Step 3: Compute the Size of Clustered Index Rows

Index rows containing variable-length columns require more overhead
than index rows containing only fixed-length values. Usethefirst formula
if al the keys arefixed length. Use the second formulaif the keysinclude
variable-length columns or allow null values.

Fixed-Length Columns Only
The clustered index in the example has only fixed length keys.

Formula Example
5 (Overhead) 5
+ Sum of bytesin the fixed-length index keys +
= Clustered row size 9

Some Variable-Length Columns
5 (Overhead)
Sum of bytesin the fixed-length index keys
Sum of bytesin variable-length index keys
= Subtotal

(Subtotal / 256) + 1 (Overhead)

Number of variable-length columns + 1
2 (Overhead)

= Clustered index row size

The results of the division (Subtotal / 256) are rounded down.

Step 4: Compute the Number of Clustered Index Pages

Formula Example

(2016 / Clustered row size) - 2 = No. of clustered index (2016/9)-2
rows per page

222

343

Using Formulas to Estimate Object Size

Formula

No. of rows/ No. of Cl rowsper page = No. of index pagesat next 750,000/ 222

Example

3379
level

If theresult for the* number of index pagesat thenext level” isgreater than
1, repeat the following division step, using the quotient as the next
dividend, until the quotient equals 1, which means that you have reached
theroot level of the index:

Formula

No. of index pages / No. of clusteredindex = No. of index pages at
at last level rows per page next level

Example

3379/ 222 = 16index pages (Leve 1)

16/ 222 = lindex page (Level 2)

Step 5: Compute the Total Number of Index Pages

Add the number of pages at each level to determine the total number of
pagesin the index:

Formula Example

Index Levels Pages Pages Rows

2 1 16

1 + + 16 3379

0 + + 3379 750000
Total number of index pages 3396

Step 6: Calculate Allocation Overhead and Total Pages

Each table and each index on atable has an object allocation map (OAM).
A single OAM page holds allocation mapping for between 2,000 and
63,750 data pages or index pages. In most cases, the number of OAM
pages required is close to the minimum value. To cal culate the number of
OAM pages for the table, use:

Formula Example
Number of reserved data pages/ 63,750 = Minimum OAM pages 750,000/ 63,750 = 12
Number of reserved data pages/ 2000 = Maximum OAM pages 750,000/ 2000 = 376

344

To calculate the number of OAM pages for the index, use:

CHAPTER 15 Determining Sizes of Tables and Indexes

Formula Example
Number of reserved index pages/ 63,750 = Minimum OAM pages 3396/ 63,750 =1
Number of reserved index pages/ 2000 = Maximum OAM pages 3396 / 2000 = 2

Total Pages Needed

Finally, add the number of OAM pages to the earlier totals to determine
the total number of pages required:

Formula Example

Minimum Maximum Minimum Maximum
Clustered index pages 3396 3379
OAM pages + + 1 2
Data pages + + 750000 750000
OAM pages + + 12 376
Total 753409 753773

Step 7: Calculate the Size of the Leaf Index Row

Index rows containing variable-length columns require more overhead
than index rows containing only fixed-length values.

Fixed-Length Keys Only Use thisformulaif the index contains only fixed-length keys and are
defined as NOT NULL:

Formula
7 (Overhead)
+ Sum of fixed-length keys
= Size of leaf index row

Some Variable-Length Usethisformulaif theindex contains any variable-length keys or columns
Keys defined asNULL:
Formula Example
9 (Overhead) 9
Sum of length of fixed-length keys + 4
Sum of length of variable-length keys + 20
Number of variable-length keys+ 1 + 2
= Subtotal 35
+ (Subtotal / 256) + 1 (overhead) + 1
= Size of leaf index row 36

345

Using Formulas to Estimate Object Size

Step 8: Calculate the Number of Leaf Pages in the Index

Formula Example

(2016 / leaf row size) = No. of leaf index rowsper 2016/ 36 = 56
page

No. of tablerows/ No. of leaf rowsper page = No. of index pagesat next 9,000,000/ 56 = 160,715
level

Step 9: Calculate the Size of the Non-Leaf Rows

Formula Example
Size of |eaf index row 36

+ 4 Overhead + 4
= Size of non-leaf row 40

Step 10: Calculate the Number of Non-Leaf Pages

Formula Example
(2016/ Size of non-leaf row) -2 = No. of non-leaf index rows per page (2016/40) - 2=148

If the number of leaf pages from step 8 is greater than 1, repeat the
following division step, using the quotient as the next dividend, until the
quotient equals 1, which means that you have reached the root level of the
index:

Formula
No. of index pages at previouslevel / No. of non-leaf index rowsper page = No. of index pagesat next level

Example

160715/ 48 = 3349 Index pages, level 1
3349/48=70 Index pages, level 2
70/48=2 Index pages, level 3
2/48=1 Index page, level 4 (root level)

Step 11: Calculate the Total Number of Non-Leaf Index Pages

Add the number of pages at each level to determine the total number of
pagesin the index:

346

CHAPTER 15 Determining Sizes of Tables and Indexes

Index Levels Pages Pages Rows

4 1 2

3 + + 2 70

2 + + 70 3348

1 + + 3349 160715

0 + + 160715 9000000
Total number of 2K data pages used 164137

Step 12: Calculate Allocation Overhead and Total Pages

Formula Example
Number of index pages/ 63,750 = Minimum OAM pages 164137/ 63,750 = 3
Number of index pages/ 2000 = Maximum OAM pages 164137 / 2000 = 83
Total Pages Needed Add the number of OAM pagestothetotal in step 11 to determinethetotal
number of index pages:
Formula Example
Minimum Maximum Minimum Maximum
Nonclustered index pages 164137 164137
OAM pages + + 3 83
Total 164140 164220

Calculating the Sizes of Data-Only-Locked Tables

Theformulas and examplesthat follow show how to calculate the sizes of
tables and indexes. This example uses the same columns sizes and index
asthe previous example. See “ Tables and Indexes Used in the Formulas”
on page 341 for the specifications.

Theformulasfor data-only-locked tables are divided into two sets of steps.

e Steps 1-3 outline the calculations for a data-only-locked table. The
example that follows Step 3 illustrates the computations on atable
that has 9,000,000 rows.

¢ Steps4-8outlinethe calculationsfor computing the space required by
an index, followed by an example using the 9,000,000-row table.

347

Using Formulas to Estimate Object Size

Step 1: Calculate the Data Row Size

Fixed-Length Columns Only

Rowsthat store variable-length data require more overhead than rows that
contain only fixed-length data, so there are two separate formulas for
computing the size of a data row.

Usethisformulaif the table contains only fixed-length columns defined as
NOT NULL:

6 (Overhead)
+ Sum of bytesin al fixed-length columns
Datarow size

Note Data-only locked tables must allow room for each row to store a 6-
byte forwarded row ID. If adata-only-locked table has rows shorter than
10 bytes, each row is padded to 10 byteswhen it isinserted. This affects
only data pages, and not indexes, and does not affect allpages-locked
tables.

Some Variable-Length Columns

Usethisformulaif the table contains variable-length columns or columns
that alow null values:

Formula Example
8 (Overhead) 8

Sum of bytesin al fixed-length columns + 100

Sum of bytesin al variable-length columns + 50

Number of variable-length columns* 2 + 4

Datarow size 162

Step 2: Compute the Number of Data Pages

348

Formula
2002 / Datarow size = Number of data rows per page
Number of rows/ Rows per page = Number of data pages required

In thefirst part of this step, the number of rows per page isrounded down:

CHAPTER 15 Determining Sizes of Tables and Indexes

Example
2002/ 162 = 12 datarows per page
9,000,000/ 12 = 750,000 data pages

Step 3: Calculate Allocation Overhead and Total Pages

Allocation Overhead

Formula

Number of reserved data pages/ 63,750
Number of reserved data pages/ 2000

Total Pages Needed

Each table and each index on atable has an object allocation map (OAM).
The OAM isstored on pagesall ocated to thetable or index. A single OAM
page holds allocation mapping for between 2,000 and 63,750 data pages
or index pages. In most cases, the number of OAM pagesrequired isclose
to the minimum value. To calculate the number of OAM pages for the
table, use:

Example
= Minimum OAM pages 750,000/ 63,750 = 12
= Maximum OAM pages 750,000/ 2000 = 375

Add the number of OAM pagesto the earlier totals to determine the total
number of pages required:

Formula Example

Minimum Maximum Minimum Maximum
Data pages + + 750000 750000
OAM pages + + 12 375
Total 750012 750375

Step 4: Calculate the Size of the Index Row

Fixed-Length Keys Only

Use these formulas for clustered and nonclustered indexes on data-only-
length tables.

Index rows containing variable-length columns require more overhead
than index rows containing only fixed-length values.

Use thisformulaif the index contains only fixed-length keys defined as
NOT NULL:

349

Using Formulas to Estimate Object Size

9 (Overhead)
+ Sum of fixed-length keys
Size of index row
Some Variable-Length Usethisformulaif theindex contains any variable-length keysor columns
Keys that allow null values:
Formula Example
9 (Overhead) 9
Sum of length of fixed-length keys + 4
Sum of length of variable-length keys + 20
Number of variable-length keys* 2 + 2
Size of index row 35

Step 5: Calculate the Number of Leaf Pages in the Index

Formula
2002 / Size of index row = No. of rows per page
No. of rowsin table/ No. of rows per page = No. of leaf pages

Example
2002 / 35 =57 Nonclustered index rows per page
9,000,000 / 57 = 157,895 leaf pages

Step 6: Calculate the Number of Non-Leaf Pages in the Index

Formula
No. of leaf pages / No. of index rows per page = No. of pagesat next level

If the number of index pages at the next level above is greater than 1,
repeat the following division step, using the quotient as the next dividend,

until the quotient equals 1, which means that you have reached the root
level of the index:

Formula

No. of index pages at previouslevel / No. of non-leaf index rows per page = No. of index pages at next level

350

CHAPTER 15 Determining Sizes of Tables and Indexes

Example

157895/57 = 2771 Index pages, level 1
2770/ 57 = 49 Index pages, level 2
48/57 =1 Index pages, level 3

Step 7: Calculate the Total Number of Non-Leaf Index Pages

Add the number of pages at each level to determine the total number of
pages in the index:

Formula Example

Index Levels Pages Pages Rows
3 1 49
2 + 49 2771
1 + 2771 157895
0 157895 9000000

Total number of 2K pagesused 160716

Step 8: Calculate Allocation Overhead and Total Pages

Formula
Number of index pages/ 63,750 = Minimum OAM pages
Number of index pages/ 2000 = Maximum OAM pages

Example
160713/ 63,750 = 3 (minimum)
160713 / 2000 = 81 (maximum)

Total Pages Needed Add the number of OAM pagesto thetotal in step 8 to determinethe total
number of index pages:
Formula Example
Minimum Maximum Minimum Maximum
Nonclustered index pages 160716 160716
OAM pages + + 3 8l
Total 160719 160797

351

Using Formulas to Estimate Object Size

Other Factors Affecting Object Size

In addition to the effects of data modifications that occur over time, other
factors can affect object size and size estimates:

e The space management properties
* Whether computations used average row size or maximum row size
e Very small text rows

e Useof text and image data

Effects of Space Management Properties

fillfactor

352

Values for fillfactor, exp_row_size, reservepagegap and
max_rows_per_page can affect object size.

The fillfactor you specify for create index is applied when theindex is
created. Thefillfactor is not maintained during insertsto the table. If a
fillfactor has been stored for an index using sp_chgattribute, thisvalue is
used when indexes are re-created with alter table...lock commands and
reorg rebuild. The main function of fillfactor isto alow space on the index
pages, to reduce page splits. Very small fillfactor values can cause the
storage space required for atable or an index to be significantly greater.

With the defaullt fillfactor of O, the index management process |eaves room
for two additional rows on each index page when you create a new index.
When you set fillfactor to 100 percent, it no longer leaves room for these
rows. The only effect that fillfactor has on size calculations is when
calculating the number of clustered index pages and when cal culating the
number of non-leaf pages. Both of these calcul ations subtract 2 from the
number of rows per page. Eliminate the -2 from these calculations.

Other valuesfor fillfactor reduce the number of rows per page on data pages
and leaf index pages. To compute the correct values when using fillfactor,
multiply the size of the available data page (2016) by thefillfactor. For
example, if your fillfactor is 75 percent, your data page would hold 1471
bytes. Use this value in place of 2016 when you calculate the number of
rows per page. For these calculations, see “ Step 2: Compute the Number
of Data Pages” on page 342 and “ Step 8: Calculate the Number of L eaf
Pagesin the Index” on page 346.

CHAPTER 15 Determining Sizes of Tables and Indexes

exp_row_size

reservepagegap

max_rows_per_page

Setting an expected row sizefor atable can increase the amount of storage
required. If your tables have many rows that are shorter than the expected
row size, setting this value and running reorg rebuild or changing the
locking scheme increases the storage space required for the table.
However, the space usage for tables that formerly used
max_rows_per_page should remain approximately the same.

Setting areservepagegap for atable or an index |eaves empty pages on
extentsthat are all ocated to the object when commandsthat perform extent
allocation are executed. Setting reservepagegap to alow value increases
the number of empty pages and spreads the data across more extents, so
the additional space required is greatest immediately after acommand
such as create index or reorg rebuild. Row forwarding and inserts into the
tablefill in the reserved pages. For more information, see“ L eaving space
for forwarded rows and inserts’ on page 279.

The max_rows_per_page value (specified by create index, create table,
alter table, or sp_chgattribute) limits the number of rows on a data page.

To compute the correct values when using max_rows_per_page, use the
max_rows_per_page vValue or the computed number of datarows per page,
whichever issmaller, in“ Step 2: Compute the Number of Data Pages’ on
page 342 and “ Step 8: Calculate the Number of Leaf Pagesin the Index”
on page 346.

Using Average Sizes for Variable Fields

All of the formulas use the maximum size of the variable-length fields.

optdiag output includes the average length of data rows and index rows.
You can use these values for the data and index row lengths, if you want
to use average lengths instead.

353

Using Formulas to Estimate Object Size

Very Small Rows

LOB Pages

354

Adaptive Server cannot store more than 256 data or index rows on a page.
Evenif your rows are extremely short, the minimum number of datapages
is:

Number of Rows/ 256 = Number of data pages required

Each text or image or Java off-row column stores a 16-byte pointer in the
data row with the datatype varbinary(16). Each column that isinitialized
requires at least 2K (one data page) of storage space.

columns store implicit null values, meaning that the text pointer in the
data row remains null and no text page isinitialized for the value, saving
2K of storage space.

If aLOB column is defined to allow null values, and the row is created
with aninsert statement that includes NULL for the column, the columnis
not initialized, and the storage is not allocated.

If aLOB columnischanged in any way with update, then the text pageis
allocated. Of course, inserts or updates that place actual datain a column
initialize the page. If the column is subsequently set to NULL, asingle
page remains all ocated.

Each LOB page stores approximately 1800 bytes of data. To estimate the
number of pages that a particular entry will use, use this formula:

Data length / 1800 = Number of 2K pages

The result should be rounded up in al cases; that is, a data length of 1801
bytes requires two 2K pages.

The total space required for the data may be dlightly larger than the
calculated value, because some LOB pages store pointer information for
other page chains in the column. Adaptive Server uses this pointer
information to perform random access and prefetch data when accessing
LOB columns. The additional space required to store pointer information
dependson thetotal size and type of the data stored in the column. Usethe
information in Table 15-3 to estimate the additional pagesrequired to store
pointer information for datain LOB columns.

CHAPTER 15 Determining Sizes of Tables and Indexes

Table 15-3: Estimated additional pages for pointer information in
LOB columns

Additional Pages Required for Pointer

Data Size and Type Information
400K image 0Oto 1 page
700K image 0to 2 pages
5MB image 1to 11 pages
400K of multibyte text 1to 2 pages
700K of multibyte text 1to 3 pages
5MB of multibyte text 210 22 pages

Advantages of Using

Formulas to Estimate Object Size

The advantages of using the formulas are:

You learn more details of the internals of data and index storage.

The formulas provide flexibility for specifying averages sizes for
character or binary columns.

While computing the index size, you see how many levels each index
has, which helps estimate performance.

Disadvantages of Using Formulas to Estimate Object Size
The disadvantages of using the formulas are:

The estimates are only as good as your estimates of average size for
variable-length columns.

The multistep cal culations are complex, and skipping steps may lead
to errors.

The actual size of an object may be different from the calculations,
based on use.

355

Using Formulas to Estimate Object Size

356

CHAPTER 16

Maintenance Activities and
Performance

This chapter explains both how maintenance activities can affect the
performance of other Adaptive Server activities, and how to improve the
performance of maintenance tasks.

Maintenance activities include such tasks as dropping and re-creating
indexes, performing dbcc checks, and updating index statistics. All of
these activities can compete with other processing work on the server.

Whenever possible,perform maintenance tasks when your Adaptive
Server usage islow. This chapter can help you determine what kind of
performance impacts these maintenance activities have on applications
and on overall Adaptive Server performance.

Topic Page
Running reorg on tables and indexes 357
Creating and maintaining indexes 358
Creating or atering a database 362
Backup and recovery 364
Bulk copy 366
Database consistency checker 369
Using dbcc tune (cleanup) 369
Determining the space available for maintenance activities 370

Running reorg on tables and indexes

Thereorg command canimprove performance for data-only-locked tables
by improving the space utilization for tables and indexes. The reorg
subcommands and their uses are:

» reclaim_space — cears committed del etes and space | eft when updates
shorten the length of data rows.

» forwarded_rows — returns forwarded rows to home pages.

357

Creating and maintaining indexes

« compact — performs both of the operations above.
e rebuild —rebuilds an entire table or index.

When you run reorg rebuild on atable, it locksthe table for the entire time
it takes to rebuild the table and itsindexes. This means that you should
schedul e the reorg rebuild command on a table when users do not need
access to the table.

All of the other reorg commands, including reorg rebuild on an index, lock
asmall number of pages at atime, and use short, independent transactions
to perform their work. You can run these commands at any time. The only
negative effects might be on systems that are very 1/0 bound.

For more information on running reorg commands, see the System
Administration Guide.

Creating and maintaining indexes

Creating indexes affects performance by locking other usersout of atable.
The type of lock depends on the index type:

« Creating a clustered index requires an exclusive table lock, locking
out all table activity. Since rowsin a clustered index are arranged in
order by the index key, create clustered index reorders data pages.

« Creatinganonclusteredindex requiresashared tablelock, locking out
update activity.

Configuring Adaptive Server to speed sorting

358

A configuration parameter configures how many buffers can be used in
cacheto hold pages from the input tables. In addition, parallel sorting can
benefit from large 1/0 in the cache used to perform the sort.

See “Configuring resources for parallel sorting” on page 586 for more
information.

CHAPTER 16 Maintenance Activities and Performance

Dumping the database after creating an index

When you create an index, Adaptive Server writes the create index
transaction and the page all ocations to the transaction log, but does not log
the actual changesto the data and index pages. To recover a database that
you have not dumped since you created the index, the entire create index
process is executed again while |oading transaction log dumps.

If you perform routine index re-creations (for example, to maintain the
fillfactor in the index), you may want to schedul e these operations to run
shortly before a routine database dump.

Creating an index on sorted data

If you need to re-create a clustered index or create one on data that was
bulk copied into the server in index key order, use the sorted_data option
to create index to shorten index creation time.

Since the data rows must be arranged in key order for clustered indexes,
creating aclustered index without sorted_data requiresthat you rewritethe
data rows to a complete new set of data pages. Adaptive Server can skip
sorting and/or copying the table'sdatarowsin some cases. Factorsinclude
table partitioning and on clauses used in the create index Sstatement.

When creating an index on anonpartitioned table, sorted_data and the use
of any of the following clauses requires that you copy the data, but does
not require a sort:

* ignore_dup_row
* fillfactor

» Theon segment_name clause, specifying adifferent sesgment from the
segment where the table datais located

» Themax_rows_per_page clause, specifying avalue that is different
from the value associated with the table

When these options and sorted_data are included in acreate index on a
partitioned table, the sort step is performed and the datais copied,
distributing the data pages evenly on the table's partitions.

Table 16-1: Using options for creating a clustered index

Options

Partitioned table Unpartitioned table

No options specified

Parallel sort; copies data, distributing Either parallel or nonparallel sort;
evenly on partitions; createsindex tree. copies data, createsindex tree.

359

Creating and maintaining indexes

Options Partitioned table Unpartitioned table

with sorted_data only Creates index tree only. Does not Creates index tree only. Does not
or perform the sort or copy data. Doesnot perform the sort or copy data. Does
with sorted_data on runin paralel. not run in paralel.

same_segment

with sorted_data and
ignore_dup_row

or fillfactor

or on other_segment
OF max_rows_per_page

Parallel sort; copies data, distributing Copies data and creates the index
evenly on partitions; createsindex tree. tree. Does not perform the sort. Does
not run in paralel.

In the simplest case, using sorted_data and no other options on a
nonpartitioned table, the order of the table rows is checked and the index
treeis built during this single scan.

If the datarows must be copied, but no sort needsto be performed, asingle
table scan checks the order of rows, builds the index tree, and copiesthe
data pages to the new location in asingle table scan.

For large tablesthat require numerous passesto build theindex, saving the
sort time reduces |/O and CPU utilization considerably.

Whenever creating a clustered index copies the data rows, the space
available must be approximately 120 percent of the table size to copy the
data and store the index pages.

Maintaining index and column statistics

360

The histogram and density values for an index are not maintained as data
rows are added and deleted. The database owner must issue an update
statistics command to ensure that statistics are current. Run update
statistics:

« After deleting or inserting rows that change the skew of key valuesin
the index

e After adding rowsto atable whoserowswere previously deleted with
truncate table

e After updating valuesin index columns

Run update statistics after insertsto any index that includesan IDENTITY
column or any increasing key value. Date columns often have regularly
increasing keys.

CHAPTER 16 Maintenance Activities and Performance

Rebuilding indexes

Running update statistics on these types of indexesis especially important
if the IDENTITY column or other increasing key isthe leading columnin
the index. After a number of rows have been inserted past the last key in
the table when the index was created, all that the optimizer can tell isthat
the search value lies beyond the last row in the distribution page.

It cannot accurately determine how many rows match a given value.

Note Failure to update statistics can severely hurt performance.

See Chapter 33, “Using Statistics to Improve Performance,” for more
information.

Rebuilding indexes reclaims space in the B-trees. As pages are split and
rows are del eted, indexes may contain many pagesthat contain only afew
rows. Also, if your application performs scans on covering nonclustered
indexes and large /O, rebuilding the nonclustered index maintains the
effectiveness of large 1/0O by reducing fragmentation.

You can rebuild indexes by dropping and re-creating theindex. If thetable
usesdata-only locking, you can run thereorg rebuild command on thetable
or on an individual index.

Re-create or rebuild indexes when:

» Dataand usage patterns have changed significantly.

» A period of heavy insertsis expected, or hasjust been completed.
» The sort order has changed.

* Queriesthat uselarge I/O require more disk reads than expected, or
optdiag reports lower cluster ratios than usual.

* Space usage exceeds estimates because heavy data modification has
left many data and index pages partially full.

» Space for expansion provided by the space management properties
(fillfactor, expected row size, and reserve page gap) has beenfilled by
inserts and updates, resulting in page splits, forwarded rows, and
fragmentation.

e dbcc hasidentified errorsin the index.

361

Creating or altering a database

If you re-create aclustered index or run reorg rebuild on adata-only-locked
table, all nonclustered indexes are re-created, since creating the clustered
index moves rows to different pages.

You must re-create nonclustered indexes to point to the correct pages.

In many database systems, there are well-defined peak periods and off-
hours. You can use off-hours to your advantage for example to:

» Deleteall indexesto alow more efficient bulk inserts.
e Create anew group of indexes to help generate a set of reports.

See “Creating and maintaining indexes’ on page 358 for information
about configuration parametersthat increase the speed of creating indexes.

Speeding index creation with sorted_data

If datais already sorted, you can use the sorted_data option for the create
index command to save index creation time. You can use this option for
both clustered and nonclustered indexes.

See“ Creating an index on sorted data” on page 359 for more information.

Creating or altering a database

362

Creating or altering a database is I/O-intensive; consequently, other 1/O-
intensive operations may suffer. When you create a database, Adaptive
Server copies the model database to the new database and then initializes
all the allocation pages and clears database pages.

The following procedures can speed database creation or minimize its
impact on other processes:

e Usethefor load option to create database if you are restoring a
database, that is, if you are getting ready to issue aload database
command.

When you create a database without for load, it copies model and then
initializes al of the allocation units.

CHAPTER 16 Maintenance Activities and Performance

CREATE
CREATE
CREATE
CREATE
CREATE
CREATE

When you use for load, it postpones zeroing the all ocation units until
theload iscomplete. Then it initializes only the untouched allocation
units. If you are loading a very large database dump, this can save a
lot of time.

¢ Create databases during off-hoursif possible.

create database and alter database perform concurrent parallel 1/0 when
clearing database pages. The number of devicesislimited by the number
of large i/o buffers configuration parameter. The default value for this
parameter is 6, allowing parallel 1/0 on 6 devices at once.

A single create database and alter database command can use up to 8 of
these buffers at once. These buffers are also used by load database, disk
mirroring, and some dbcc commands.

Using the default value of 6, if you specify more than 6 devices, thefirst 6
writes are immediately started. Asthe I/O to each device completes, the
16K buffers are used for remaining devices listed in the command. The
following example names 10 separate devices.

create dat abase hugedb
on devl = 100

dev2 = 100,
dev3 = 100,
dev4 = 100,
dev5 = 100,
dev6 = 100,
dev7 = 100,
dev8 = 100

Il og on | ogdevl = 100,
| ogdev2 = 100

During operationsthat use these buffers, amessageis sent to thelog when
the number of buffersis exceeded. Thisinformation for the create
database command above shows that create database started clearing
devices on thefirst 6 disks, using all of the large I/O buffers, and then
waited for them to complete before clearing the pages on other devices:

DATABASE: al |l ocating 51200 pages on di sk ’'devl
DATABASE: al | ocating 51200 pages on di sk 'dev2
DATABASE: al |l ocating 51200 pages on di sk 'dev3
DATABASE: all ocating 51200 pages on di sk 'dev4
DATABASE: al |l ocating 51200 pages on di sk ' dev5
DATABASE: al | ocating 51200 pages on di sk ' dev6

01: 00000: 00013: 1999/ 07/ 26 15:36:17.54 server No disk i/o buffers
are available for this operation. The total nunber of buffers is
controlled by the configuration paraneter 'nunber of large i/o

363

Backup and recovery

buffers’.

CREATE DATABASE: all ocating 51200 pages on disk 'dev?7’
CREATE DATABASE: all ocating 51200 pages on di sk ’'dev8’
CREATE DATABASE: allocating 51200 pages on disk 'l ogdevl’
CREATE DATABASE: allocating 51200 pages on disk '|ogdev2’

When create database copies model, it uses 2K 1/O.
See the System Administration Guide.

Backup and recovery

Local backups

Remote backups

364

All Adaptive Server backups are performed by a backup server. The
backup architecture uses a client/server paradigm, with Adaptive Servers
as clients to a backup server.

Adaptive Server sendsthe local Backup Server instructions, viaremote
procedure calls, telling the Backup Server which pages to dump or load,
which backup devices to use, and other options. Backup server performs
all thedisk I/0.

Adaptive Server does not read or send dump and load data, it sends only
instructions.

backup server aso supports backups to remote machines. For remote
dumpsand loads, alocal backup server performsthedisk 1/0 related to the
database device and sends the data over the network to the remote backup
server, which storesit on the dump device.

CHAPTER 16 Maintenance Activities and Performance

Online backups

You can perform backups while a database is active. Clearly, such
processing affects other transactions, but you should not hesitate to back
up critical databases as often as necessary to satisfy the reliability
requirements of the system.

See the System Administration Guide for acompl ete discussion of backup
and recovery strategies.

Using thresholds to prevent running out of log space

Dump striping

If your database has limited log space, and you occasionaly hit the last-
chance threshold, install a second threshold that provides ample time to
perform atransaction log dump. Running out of log space has severe
performance impacts. Users cannot execute any data modification
commands until log space has been freed.

If you are performing incremental log dumps, use stripping to improve
performance.

Minimizing recovery time

You can help minimize recovery time, by changing the recovery interval
configuration parameter. The default value of 5 minutes per database
works for most installations. Reduce this value only if functional
requirements dictate a faster recovery period. It can increase the amount
of 1/O required.

See “Tuning the recovery interval” on page 327.

Recovery speed may also be affected by the value of the housekeeper free
write percent configuration parameter. The default value of this parameter
allows the server’s housekeeper task to write dirty buffersto disk during
the server’sidle cycles, aslong as disk 1/0 is not increased by more than
20 percent.

365

Bulk copy

Recovery order

Bulk copy

Parallel bulk copy

366

During recovery, system databases are recovered first. Then, user
databases are recovered in order by database ID.

Bulk copying into a table on Adaptive Server runs fastest when there are
no indexes or active triggers on the table. When you are running fast bulk
copy, Adaptive Server performs reduced logging.

It does not log the actual changes to the database, only the allocation of
pages. And, since there are no indexes to update, it saves all thetimeiit
would otherwise take to update indexes for each datainsert and to log the
changes to the index pages.

To use fast bulk copy:
< Drop any indexes; re-create them when the bulk copy compl etes.

e Usealter table...disable trigger to deactivate triggers during the copy;
use alter table...enable trigger after the copy completes.

e Settheselectinto/bulkcopy/plisort option with sp_dboption. Remember
to turn the option off after the bulk copy operation compl etes.

During fast bulk copy, rules are not enforced, but defaults are enforced.

Since changes to the data are not logged, you should perform a dump
database soon after afast bulk copy operation. Performing afast bulk copy
in a database blocks the use of dump transaction, since the unlogged data
changes cannot be recovered from the transaction log dump.

For fastest performance, you can use fast bulk copy to copy datainto
partitioned tables. For each bulk copy session, you specify the partition on
which the data should reside.

If your input fileis already in sorted order, you can bulk copy datainto
partitions in order, and avoid the sorting step while creating clustered
indexes.

CHAPTER 16 Maintenance Activities and Performance

See “ Steps for partitioning tables’ on page 104 for step-by-step
procedures.

Batches and bulk copy

If you specify abatch size during afast bulk copy, each new batch must
start on a new data page, since only the page allocations, and not the data
changes, arelogged during a fast bulk copy. Copying 1000 rows with a
batch size of 1 requires 1000 data pages and 1000 allocation recordsin the
transaction log.

If you areusing asmall batch sizeto help detect errorsin theinput file, you
may want to choose a batch size that corresponds to the numbers of rows
that fit on adata page.

Slow bulk copy

If atable hasindexes or triggers, a lower version of bulk copy is
automatically used. For slow bulk copy:

You do not have to set the select into/bulkcopy.

Rules are not enforced and triggers are not fired, but defaults are
enforced.

All data changes are logged, as well as the page allocations.

Indexes are updated as rows are copied in, and index changes are
logged.

Improving bulk copy performance
Other ways to increase bulk copy performance are;

Set thetrunc log on chkpt option to keep thetransaction log from filling
up. If your database has a threshold procedure that automatically
dumps the log when it fills, you will save the transaction dump time.

Remember that each batch is a separate transaction, so if you are not
specifying a batch size, setting trunc log on chkpt will not help.

367

Bulk copy

e Setthenumber of pre allocated extents configuration parameter high if
you perform many large bulk copies.

See the System Administration Guide.
e Find the optimal network packet size.
See Chapter 2, “Networks and Performance,”.

Replacing the data in a large table

If you arereplacing al the datain alarge table, use the truncate table
command instead of the delete command. truncate table performs reduced
logging. Only the page deallocations are logged.

delete is completely logged, that is, all the changes to the data are logged.
The steps are:

1 Truncate the table. If the tableis partitioned, you must unpartition
before you can truncate it.

2 Drop all indexes on the table.
3 Load the data
4 Re-create the indexes.

See “ Steps for partitioning tables” on page 104 for more information on
using bulk copy with partitioned tables.

Adding large amounts of data to a table

368

When you are adding 10 to 20 percent or more to alarge table, drop the
nonclustered indexes, load the data, and then re-create nonclustered
indexes.

For very large tables, you may need to |eave the clustered index in place
due to space constraints. Adaptive Server must make a copy of thetable
when it creates a clustered index. In many cases, once tables become very
large, thetimerequired to performaslow bulk copy withtheindex in place
islessthan thetimeto perform afast bulk copy and re-create the clustered
index.

CHAPTER 16 Maintenance Activities and Performance

Using partitions and multiple bulk copy processes

If you are loading data into a table without indexes, you can create
partitions on the table and use one bep session for each partition.

See “Using parallel bcp to copy datainto partitions’” on page 97.

Impacts on other users

Bulk copying large tablesin or out may affect other users' response time.
If possible:

» Schedule bulk copy operations for off-hours.
» Usefast bulk copy, sinceit doeslesslogging and less 1/O.

Database consistency checker

It isimportant to run database consistency checks periodically with dbcc.
If you back up a corrupt database, the backup is useless. But dbcc affects
performance, since dbcc must acquire locks on the objects it checks.

See the System Administration Guide for information about dbcc and
locking, with additional information about how to minimize the effects of
dbcc on user applications.

Using dbcc tune (cleanup)

Adaptive Server performs redundant memory cleanup checking as afinal
integrity check after processing each task. In very high throughput
environments, a sight performance improvement may be realized by
skipping this cleanup error check. To turn off error checking, enter:

dbcc tune(cl eanup, 1)

Thefina cleanup frees up any memory atask might hold. If you turn the
error checking off, but you get memory errors, reenable the checking by
entering:

369

Determining the space available for maintenance activities

dbcc tune(cl eanup, 0)

Determining the space available for maintenance

activities

Several maintenance operations regquire room to make a copy of the data
pages of atable:

* create clustered index

* alter table...lock

e Some alter table commands that add or modify columns
* reorg rebuild on atable

In most cases, these commands al so require spaceto re-create any indexes,
S0 you need to determine:

* Thesize of the table and its indexes

e Theamount of space available on the segment where the tableis
stored

* The space management properties set for the table and its indexes

The following sections describe tools that provide information on space
usage and space availahility.

Overview of space requirements

370

Any command that copies atable’s rows also re-creates al of the indexes
on the table. You need space for a complete copy of the table and copies
of al indexes.

These commands do not estimate how much space is needed. They stop
with an error message if they run out of space on any segment used by the
table or itsindexes. For large tables, this could occur minutes or even
hours after the command starts.

You need free space on the segments used by the table and itsindexes, as
follows:

» Free space on the table’'s segment must be at least equal to:

CHAPTER 16 Maintenance Activities and Performance

¢ Thesizeof thetable, plus

¢ Approximately 20 percent of the table size, if thetable hasa
clustered index and you are changing from allpages locking to
data-only locking

» Free space on the segments used by nonclustered indexes must be at
least equal to the size of the indexes.

Clustered indexes for data-only-locked tables have aleaf level above the
data pages. If you are altering a table with a clustered index from allpages
locking to data-only locking, the resulting clustered index requires more

space. The additional space required depends on the size of theindex keys.

Tools for checking space usage and space available

Asasimpleguideline, copying atable and itsindexes requires space equal
to the current space used by the table and its indexes, plus about 20%
additional room. However:

» |If data modifications have created many partially-full pages, space
required for the copy of the table can be smaller than the current size.

» |If space-management properties for the table have changed, or if
space required by fillfactor or reservepagegap has been filled by data
modifications, the size required for the copy of the table can belarger.

* Adding columns or modifying columnsto larger datatypes requires
more space for the copy.

Log spaceisalso required.

Checking space used for tables and indexes
To see the size of atable and itsindexes, use:
sp_spaceused titles, 1

See“ Calculating the Sizes of Data-Only-Locked Tables’ on page 347 for
information on estimating the size of the clustered index.

371

Determining the space available for maintenance activities

Checking space on segments

Tables are always copied to free space on the segment where they are
currently stored, and indexes are re-created on the segment where they are
currently stored. Commands that create clustered indexes can specify a
segment. The copy of the table and the clustered index are created on the
target segment.

To determine the number of pages available on a segment, use
sp_helpsegment. The last line of sp_helpsegment shows the total number
of free pages available on a segment.

The following command prints segment information for the default
segment, where objects are stored when no segment was explicitly
specified:

sp_hel psegnent "default"

sp_helpsegment reportsthe names of indexes on the segment. If you do not
know the segment name for atable, use sp_help and the table name. The
segment names for indexes are al so reported by sp_help.

Checking space requirements for space management properties

If you make significant changesto space management property values, the
table copy can be considerably larger or smaller than the original table.
Settings for space management properties are stored in the sysindexes
tables, and are displayed by sp_help and sp_helpindex. This output shows
the space management properties for the titles table:

exp_row_si ze reservepagegap fillfactor max_rows_per_page

i ndex_name
i ndex_keys

sp_helpindex produces this report:

i ndex_descri ption

i ndex_max_rows_per _page index_fillfactor index_reservepagegap

title_ id_ix
title id

title_ix
title

type_price
type, price

372

noncl ustered | ocated on default

0 75 0

noncl ustered | ocated on default

0 80 16

noncl ustered | ocated on default

CHAPTER 16 Maintenance Activities and Performance

Space management properties applied to the table

During the copy step, the space management properties for the table are
used as follows:

e Ifanexpected row sizevalueis specified for thetable, and thelocking
schemeis being changed from allpages | ocking to data-only locking,
the expected row size is applied to the data rows as they are copied.

If no expected row sizeis set, but thereisamax_rows_per_page value
for the table, an expected row sizeis computed, and that valueis used.

Otherwise, the default val ue specified with the configuration
parameter default exp_row_size percent isused for each pageallocated
for the table.

¢ Thereservepagegap is applied as extents are all ocated to the table.

¢ If sp_chgattribute has been used to save afillfactor value for the table,
it is applied to the new data pages as the rows are copied.

Space management properties applied to the index

When the indexes are rebuilt, space management properties for the
indexes are applied, asfollows:

» |f sp_chgattribute has been used to save fillfactor values for indexes,
these values are applied when the indexes are re-created.

» If reservepagegap values are set for indexes, these values are applied
when the indexes are re-created.

Estimating the effects of space management properties

Table 16-2 shows how to estimate the effects of setting space management
properties.

Table 16-2: Effects of space management properties on space use

Property Formula Example

fillfactor Requires fillfactor of 75 requires 1.33 times current
(100ffilifactor) * num_pagesif pagesare number of pages; atable of 1,000 pages
currently fully packed growsto 1,333 pages.

373

Determining the space available for maintenance activities

Property Formula Example
reservepagegap Increases space by reservepagegap of 10 increase spaceused
Lreservepagegap if extentsare currently by 10%; atable of 1,000 pages grows to
filled 1,100 pages.
max_rows_per_page Converted to exp_row_size when See Table 16-3 on page 374.
converting to data-only-locking
exp_row_size Increase depends on number of rows If exp_row_size is 100, and 1,000 rows
smaller thanexp_rowsize, andtheaverage have alength of 60, the increase in space
length of those rows is:
(100 - 60) * 1000 or 40,000 bytes;
approximately 20 additional pages.
For more information, see Chapter 13, “ Setting Space M anagement
Properties,”.
If atable has max_rows_per_page set, and the table is converted from
allpages locking to data-only locking, the valueis converted to an
exp_row_size value before the alter table...lock command copies the table
to its new location.
The exp_row_size is enforced during the copy. Table 16-3 shows how the
values are converted.
Table 16-3: Converting max_rows_per_page to exp_row_size
If max_rows_per_page is set to Set exp_row_size to
0 Percentage value set by default exp_row_size percent
255 1, that is, fully packed pages
1-254 The smaller of:

e maximum row size
¢ 2002/max_rows_per_page value

If there is not enough space

374

If thereis not enough space to copy the table and re-create all the indexes,
determine whether dropping the nonclustered indexes on the table leaves
enough room to create a copy of the table. Without any nonclustered
indexes, the copy operation requires space just for the table and the
clustered index.

Do not drop the clustered index, sinceit is used to order the copied rows,
and attempting to re-createit later may require space to make acopy of the
table. Re-create the nonclustered indexes after the command compl etes.

	Performance and Tuning Guide: Volume 1 - Basics
	Adaptive Server Enterprise
	About This Book
	Audience
	How to use this book
	Index
	Related documents
	Other sources of information
	Sybase certifications on the Web
	For the latest information on product certifications
	For the latest information on EBFs and Updates
	To create a personalized view of the Sybase Web site (including support pages)
	Conventions
	Formatting SQL statements
	Font and syntax conventions
	Table 1: Font and syntax conventions in this manual
	Case
	Expressions
	Table 2: Types of expressions used in syntax statements
	Examples
	If you need help

	CHAPTER 1 Overview
	Good performance
	Response time
	Throughput
	Designing for performance

	Tuning performance
	Figure 1-1: Adaptive Server system model
	Tuning levels
	Application layer
	Database layer
	Adaptive Server layer
	Devices layer
	Network layer
	Hardware layer
	Operating – system layer

	Identifying system limits
	Setting tuning goals
	Analyzing performance
	Normal Forms
	Locking
	Special Considerations

	CHAPTER 2 Networks and Performance
	Introduction
	Potential performance problems
	Basic questions on network performance
	Techniques summary
	Using sp_sysmon while changing network configuration

	How Adaptive Server uses the network
	Changing network packet sizes
	Large versus Default packet sizes for user connections
	Number of packets is important
	Evaluation tools with Adaptive Server
	Evaluation tools outside of Adaptive Server
	Server-based techniques for reducing network traffic
	Table 2-1: Network options

	Impact of other server activities
	Single user versus multiple users

	Improving network performance
	Isolate heavy network users
	Figure 2-1: Isolating heavy network users

	Set tcp no delay on TCP networks
	Configure multiple network listeners

	CHAPTER 3 Using Engines and CPUs
	Background concepts
	How Adaptive Server processes client requests
	Client task implementation
	Figure 3-1: Process versus subprocess architecture

	Single-CPU process model
	Scheduling engines to the CPU
	Figure 3-2: Processes queued in the run queue for a single CPU
	Figure 3-3: Multithreaded processing

	Scheduling tasks to the engine
	Figure 3-4: Tasks queue up for the Adaptive Server engine

	Execution task scheduling
	Scheduling client task processing time
	Maintaining CPU availability during idle time

	Adaptive Server SMP process model
	Scheduling engines to CPUs
	Figure 3-5: Processes queued in the OS run queue for multiple CPUs

	Scheduling Adaptive Server tasks to engines
	Multiple network engines
	Task priorities and run queues
	Processing scenario

	Housekeeper task improves CPU utilization
	Side effects of the housekeeper task
	Configuring the housekeeper task
	Changing the percentage by which writes can be increased
	Disabling the housekeeper task
	Allowing the housekeeper task to work continuously

	Measuring CPU usage
	Single-CPU machines
	Using sp_monitor to measure CPU usage
	Using sp_sysmon to measure CPU usage
	Operating - system commands and CPU usage

	Determining when to configure additional engines
	Taking engines offline

	Enabling engine-to-CPU affinity
	Multiprocessor application design guidelines

	CHAPTER 4 Distributing Engine Resources
	Algorithm for successfully distributing engine resources
	Figure 4-1: Process for assigning execution precedence
	Algorithm guidelines
	Environment analysis and planning
	Analyzing
	Where to start

	Example: phase 1 – execution object behavior
	Intrusive and unintrusive
	I/O-intensive and CPU-intensive execution objects

	Example: phase 2 – the environment as a whole

	Performing benchmark tests
	Setting goals
	Results analysis and tuning
	Monitoring the environment over time

	Manage preferred access to resources
	Types of execution classes
	Predefined execution classes
	User-Defined execution classes

	Execution class attributes
	Table 4-1: Fixed-attribute composition of predefined execution classes
	Base priority
	Time slice
	Task-to-engine affinity

	Setting execution class attributes
	Table 4-2: System procedures for managing execution object precedence
	Assigning execution classes
	Engine groups and establishing task-to-engine affinity
	Figure 4-2: An example of engine affinity

	How execution class bindings affect scheduling
	Execution class bindings
	Figure 4-3: Execution objects and their tasks

	Engine affinity can affect scheduling

	Setting attributes for a session only
	Getting information

	Rules for determining precedence and scope
	Multiple execution objects and ECs
	Precedence rule
	Precedence Rule Example
	Figure 4-4: Use of the precedence rule

	Scope rule

	Resolving a precedence conflict
	Examples: determining precedence
	Table 4-3: Conflicting attribute values and Adaptive Server assigned values

	Example scenario using precedence rules
	Figure 4-5: Conflict resolution
	Planning
	Table 4-4: Example analysis of an Adaptive Server environment

	Configuration
	Execution characteristics

	Considerations for Engine Resource Distribution
	Table 4-5: When assigning execution precedence is useful
	Client applications: OLTP and DSS
	Unintrusive client applications
	I/O-bound client applications
	Highly critical applications

	Adaptive Server logins: high-priority users
	Stored procedures: “hot spots”

	CHAPTER 5 Controlling Physical Data Placement
	Object placement can improve performance
	Symptoms of poor object placement
	Underlying problems
	Using sp_sysmon while changing data placement

	Terminology and concepts
	Guidelines for improving I/O ierformance
	Spreading data across disks to avoid I/O contention
	Avoiding physical contention in parallel join queries
	Figure 5-1: Joining tables on different physical devices

	Isolating server-wide I/O from database I/O
	Where to place tempdb
	Where to place sybsecurity

	Keeping transaction logs on a separate disk
	Mirroring a device on a separate disk
	Device mirroring performance issues
	Using serial mode

	Creating objects on segments
	Using segments
	Separating tables and indexes
	Splitting large tables across devices
	Moving text storage to a separate device

	Partitioning tables for performance
	User transparency
	Partitioned tables and parallel query processing
	Distributing data across partitions

	Improving insert performance with partitions
	How partitions address page contention
	Selecting heap tables to partition

	Restrictions on partitioned tables
	Partition-related configuration parameters
	How Adaptive Server distributes partitions on devices
	Table 5-1: Assigning partitions to segments
	RAID devices and partitioned tables

	Space planning for partitioned tables
	Read-only tables
	Read-mostly tables
	Tables with random data modification

	Commands for partitioning tables
	alter table...partition syntax
	alter table...unpartition Syntax
	Changing the number of partitions
	Distributing data evenly across partitions
	Commands to create and drop clustered indexes
	Using reorg rebuild on data-only-locked tables
	Using drop index and create clustered index
	Using constraints and alter table
	Special concerns for partitioned tables and clustered indexes

	Using parallel bcp to copy data into partitions
	Parallel copy and locks

	Getting information about partitions
	Using bcp to correct partition balance
	Checking data distribution on devices with sp_helpsegment
	Effects of imbalance of data on segments and partitions
	Determining the number of pages in a partition

	Updating partition statistics
	Syntax for update partition statistics

	Steps for partitioning tables
	Backing up the database after partitioning tables
	Table does not exist
	Table exists elsewhere in the database
	Table exists on the segment
	Redistributing data
	If there is enough space to create or re-create the clustered index
	If there is not enough space on the segment, but space exists elsewhere on the server
	Using the default segment or tempdb
	Using space on another segment
	If there is not enough space to re-create the clustered index
	If there is not enough space, and no clustered index is required
	If there is no clustered index, not enough space, and a clustered index is needed

	Adding devices to a segment

	Special procedures for difficult situations
	Clustered indexes on large tables
	Alternative for clustered indexes

	Problems when devices for partitioned tables are full
	Adding disks when devices are full
	Figure 5-2: A table with 3 partitions on 3 devices
	Figure 5-3: Devices and partitions after create index

	Adding disks when devices are nearly full
	Figure 5-4: Partitions almost completely fill the devices
	Figure 5-5: Extent stealing and unbalanced data distribution

	Maintenance issues and partitioned tables
	Regular maintenance checks for partitioned tables

	CHAPTER 6 Database Design
	Basic design
	Physical database design for Adaptive Server
	Logical Page Sizes

	Normalization
	Levels of normalization
	Benefits of normalization
	First Normal Form
	Figure 6-1: A table that violates first Normal Form
	Figure 6-2: Correcting First Normal Form violations by creating two tables

	Second Normal Form
	Figure 6-3: A table that violates Second Normal Form
	Figure 6-4: Correcting Second Normal Form violations by creating two tables

	Third Normal Form
	Figure 6-5: A table that violates Third Normal Form
	Figure 6-6: Correcting Third Normal Form violations by creating two tables

	Denormalizing for performance
	Risks
	Disadvantages
	Performance advantages

	Denormalization input
	Techniques
	Adding redundant columns
	Adding derived columns
	Figure 6-7: Denormalizing by adding derived columns

	Collapsing tables
	Duplicating tables
	Figure 6-8: Denormalizing by duplicating tables

	Splitting tables
	Horizontal splitting
	Figure 6-9: Horizontal partitioning of active and inactive data

	Vertical splitting

	Managing denormalized data
	Using triggers
	Figure 6-10: Using triggers to maintain normalized data

	Using application logic
	Batch reconciliation

	CHAPTER 7 Data Storage
	Performance gains through query optimization
	Query processing and page reads

	Adaptive Server pages
	Page headers and page sizes
	Table 7-1: Overhead and user data space on data and index pages

	Varying logical page sizes
	Data and index pages
	Large Object (LOB) Pages
	Extents

	Pages that manage space allocation
	Global allocation map pages
	Allocation pages
	Object allocation map pages
	How OAM pages and allocation pages manage object storage
	Figure 7-1: OAM page and allocation page pointers

	Page allocation keeps an object’s pages together
	sysindexes table and data access
	Table 7-2: Use of sysindexes pointers in data access

	Space overheads
	Number of columns and size
	Table 7-3: Maximum row and column length - APL & DOL
	Variable-length columns in APL tables
	Table 7-4: Maximum size for variable-length columns in an APL table
	Variable-length columns that exceed the logical page size

	Variable length columns in DOL tables
	Table 7-5: Maximum size for variable-length columns in an DOL table
	Restrictions for converting locking schemes or using select into
	Organizing columns in DOL tables by size of variable-length columns

	Number of rows per data page
	Table 7-6: Maximum number of data rows for a DOL data page

	Maximum numbers
	Arguments for stored procedures
	Retrieving data with enhanced limits

	Heaps of data: tables without clustered indexes
	Lock schemes and differences between heaps
	Select operations on heaps
	Allpages-locked heap tables
	Data-only locked heap tables

	Inserting data into an allpages-locked heap table
	Conflicts during heap inserts

	Inserting data into a data-only-locked heap table
	If conflicts occur during heap inserts

	Deleting data from a heap table
	Deleting from an allpages-locked heap table
	Deleting from a data-only locked heap table
	Deleting the last row on a page

	Updating data on a heap table
	Allpages-locked heap tables
	Data-only-locked heap tables

	How Adaptive Server performs I/O for heap operations
	Sequential prefetch, or large I/O

	Caches and object bindings
	Heaps, I/O, and cache strategies
	Overview of cache strategies
	LRU replacement strategy
	Figure 7-2: LRU strategy takes a clean page from the LRU end of the cache

	When LRU strategy is used
	MRU replacement strategy
	Figure 7-3: MRU strategy places pages just before the wash marker
	Figure 7-4: Finding a needed page in cache

	Select operations and caching
	Data modification and caching
	Caching and inserts on heaps
	Figure 7-5: Inserts to a heap page in the data cache

	Caching, update and delete operations on heaps

	Asynchronous prefetch and I/O on heap tables
	Heaps: pros and cons
	Maintaining heaps
	Methods
	Using reorg rebuild to reclaim space
	Reclaiming space by creating a clustered index
	Reclaiming space using bcp

	Transaction log: a special heap table

	CHAPTER 8 Indexing for Performance
	How indexes affect performance
	Detecting indexing problems
	Symptoms of poor indexing
	Lack of indexes is causing table scans
	Index is not selective enough
	Index does not support range queries
	Too many indexes slow data modification
	Index entries are too large
	Table 8-1: Effects of key size on index size and levels

	Exception for wide data rows and wide index rows

	Index limits and requirements
	Choosing indexes
	Index keys and logical keys
	Guidelines for clustered indexes
	Choosing clustered indexes
	Candidates for nonclustered indexes
	Other indexing guidelines
	Choosing nonclustered indexes
	Performance price for data modification

	Choosing composite indexes
	Key order and performance in composite indexes
	Table 8-2: Composite nonclustered index ordering and performance

	Advantages and disadvantages of composite indexes

	Techniques for choosing indexes
	Choosing an index for a range query
	Adding a point query with different indexing requirements
	Table 8-3: Comparing index strategies for two queries

	Index and statistics maintenance
	Dropping indexes that hurt performance
	Choosing space management properties for indexes

	Additional indexing tips
	Creating artificial columns
	Keeping index entries short and avoiding overhead
	Dropping and rebuilding indexes

	CHAPTER 9 How Indexes Work
	Types of indexes
	Index pages
	Root level
	Leaf level
	Intermediate level

	Index Size
	Table 9-1: Index row-size limit

	Clustered indexes on allpages-locked tables
	Clustered indexes and select operations
	Figure 9-1: Selecting a row using a clustered index, allpages- locked table

	Clustered indexes and insert operations
	Figure 9-2: Inserting a row into an allpages-locked table with a clustered index

	Page splitting on full data pages
	Figure 9-3: Page splitting in an allpages-locked table with a clustered index
	Exceptions to page splitting

	Page splitting on index pages
	Performance impacts of page splitting
	Overflow pages
	Figure 9-4: Adding an overflow page to a clustered index, allpages- locked table

	Clustered indexes and delete operations
	Figure 9-5: Deleting a row from a table with a clustered index
	Deleting the last row on a page
	Figure 9-6: Deleting the last row on a page (after the delete)

	Index page merges

	Nonclustered indexes
	Leaf pages revisited
	Nonclustered index structure
	Figure 9-7: Nonclustered index structure

	Nonclustered indexes and select operations
	Figure 9-8: Selecting rows using a nonclustered index

	Nonclustered index performance
	Nonclustered indexes and insert operations
	Figure 9-9: An insert into a heap table with a nonclustered index

	Nonclustered indexes and delete operations
	Figure 9-10: Deleting a row from a table with a nonclustered index

	Clustered indexes on data-only-locked tables

	Index covering
	Covering matching index scans
	Figure 9-11: Matching index access does not have to read the data row

	Covering nonmatching index scans
	Figure 9-12: A nonmatching index scan

	Indexes and caching
	Using separate caches for data and index pages
	Index trips through the cache

	CHAPTER 10 Locking Configuration and Tuning
	Locking and performance
	Using sp_sysmon and sp_object_stats
	Reducing lock contention
	Adding indexes to reduce contention
	Keeping transactions short
	Table 10-1: Examples

	Avoiding hot spots

	Additional locking guidelines

	Configuring locks and lock promotion thresholds
	Configuring Adaptive Server’s lock limit
	Estimating number of locks for data-only-locked tables
	Insert commands and locks
	select queries and locks
	Data modification commands and locks

	Configuring the lock hashtable
	Setting lock promotion thresholds
	Lock promotion and scan sessions
	Lock promotion high water mark
	Lock promotion low water mark
	Lock promotion percent
	Figure 10-1: Lock promotion logic

	Setting server-wide lock promotion thresholds
	Setting the lock promotion threshold for a table or database
	Precedence of settings
	Dropping database and table settings
	Using sp_sysmon while tuning lock promotion thresholds

	Choosing the locking scheme for a tablel
	Analyzing existing applications
	Choosing a locking scheme based on contention statistics
	Monitoring and managing tables after conversion
	Applications not likely to benefit from data-only locking
	Tables where clustered index performance must remain high
	Tables with maximum-length rows

	CHAPTER 11 Using Locking Commands
	Specifying the locking scheme for a table
	Specifying a server-wide locking scheme
	Specifying a locking scheme with create table
	Changing a locking scheme with alter table
	Before and after changing locking schemes
	After alter table completes

	Expense of switching to or from allpages locking
	Sort performance during alter table
	Specifying a locking scheme with select into

	Controlling isolation levels
	Setting isolation levels for a session
	Syntax for query-level and table-level locking options
	Using holdlock, noholdlock, or shared
	Using the at isolation clause
	Making locks more restrictive
	Using read committed

	Making locks less restrictive
	Using read uncommitted
	Using shared

	Readpast locking
	Cursors and locking
	Using the shared keyword

	Additional locking commands
	lock table Command
	Lock timeouts

	CHAPTER 12 Reporting on Locks
	Locking tools
	Getting information about blocked processes
	Viewing locks
	Viewing locks
	Intrafamily blocking during network buffer merges

	Deadlocks and concurrency
	Server-side versus application-side deadlocks
	Application deadlock example

	Server task deadlocks
	Deadlocks and parallel queries
	Figure 12-1: A deadlock involving a family of worker processes

	Printing deadlock information to the error log
	Avoiding deadlocks
	Acquire locks on objects in the same order
	Delaying deadlock checking

	Identifying tables where concurrency is a problem
	Table 12-1: sp_object_stats output

	Lock management reporting

	CHAPTER 13 Setting Space Management Properties
	Reducing index maintenance
	Advantages of using fillfactor
	Disadvantages of using fillfactor
	Setting fillfactor values
	fillfactor examples
	No stored fillfactor values
	Table 13-1: fillfactor values applied with no table-level saved value
	Values used for alter table...lock and reorg rebuild
	Table 13-2: fillfactor values applied with during rebuilds

	Table-level or clustered index fillfactor value stored
	Table 13-3: Using stored fillfactor values for clustered indexes
	Effects of alter table...lock when values are stored
	Tables with clustered indexes
	Table 13-4: Effects of stored fillfactor values during alter table

	fillfactor values stored for nonclustered indexes
	Table 13-5: Effect of stored fillfactor values during reorg rebuild

	Use of the sorted_data and fillfactor options

	Reducing row forwarding
	Default, minimum, and maximum values for exp_row_size
	Table 13-6: Valid values for expected row size
	Default value

	Specifying an expected row size with create table
	Adding or changing an expected row size
	Setting a default expected row size server-wide
	Displaying the expected row size for a table
	Choosing an expected row size for a table
	Using optdiag to check for forwarded rows
	Querying systabstats to check for forwarded rows

	Conversion of max_rows_per_page to exp_row_size
	Table 13-7: Conversion of max_rows_per_page to exp_row_size

	Monitoring and managing tables that use expected row size

	Leaving space for forwarded rows and inserts
	Extent allocation operations and reservepagegap
	Figure 13-1: Reserved pages after creating a clustered index

	Specifying a reserve page gap with create table
	Specifying a reserve page gap with create index
	Changing reservepagegap
	reservepagegap examples
	reservepagegap specified only for the table
	Table 13-8: reservepagegap values applied with table-level saved value

	reservepagegap specified for a clustered index
	Table 13-9: reservepagegap values applied with for index pages

	Choosing a value for reservepagegap
	Monitoring reservepagegap settings
	reservepagegap and sorted_data options to create index
	Background on the sorted_data option
	Table 13-10: reservepagegap and sorted_data options

	Matching options and goals

	Using max_rows_per_page on allpages-locked tables
	Reducing lock contention
	Indexes and max_rows_per_page
	select into and max_rows_per_page
	Applying max_rows_per_page to existing data

	CHAPTER 14 Memory Use and Performance
	How memory affects performance
	How much memory to configure
	Figure 14-1: How Adaptive Server uses memory

	Caches in Adaptive Server
	Procedure cache
	Getting information about the procedure cache size
	proc buffers
	proc headers
	Monitoring procedure cache performance
	Procedure cache errors

	Procedure cache sizing
	Figure 14-2: Formulas for sizing the procedure cache

	Estimating stored procedure size

	Data cache
	Default cache at installation time
	Page aging in data cache
	Effect of data cache on retrievals
	Figure 14-3: Effects of random selects on the data cache

	Effect of data modifications on the cache
	Data cache performance
	Testing data cache performance
	Cache hit ratio for a single query
	Cache hit ratio information from sp_sysmon

	Configuring the data cache to improve performance
	Commands to configure named data caches
	Table 14-1: Commands used to configure caches

	Tuning named caches
	Cache configuration goals
	Gather data, plan, and then implement
	Evaluating cache needs
	Large I/O and performance
	The optimizer and cache choices
	Choosing the right mix of I/O sizes for a cache

	Reducing spinlock contention with cache partitions
	Cache replacement strategies and policies
	Strategies
	Policies
	Configuring relaxed LRU Replacement for database logs
	Relaxed LRU replacement for lookup tables and indexes

	Named data cache recommendations
	Sizing caches for special objects, tempdb, and transaction logs
	Determining cache sizes for special tables or indexes
	Examining cache needs for tempdb
	Examining cache needs for transaction logs
	Choosing the I/O size for the transaction log
	Configuring for large log I/O size
	Additional tuning tips for log caches

	Basing data pool sizes on query plans and I/O
	Checking I/O size for queries

	Configuring buffer wash size
	Overhead of pool configuration and binding objects
	Pool configuration overhead
	Cache binding overhead

	Maintaining data cache performance for large I/O
	Diagnosing excessive I/O Counts
	Using sp_sysmon to check large I/O performance

	Speed of recovery
	Tuning the recovery interval
	Table 14-2: Effects of recovery interval on performance and recovery time

	Effects of the housekeeper task on recovery time

	Auditing and performance
	Sizing the audit queue
	Figure 14-4: Trade-offs in auditing and performance

	Auditing performance guidelines

	CHAPTER 15 Determining Sizes of Tables and Indexes
	Why Object Sizes Are Important to Query Tuning
	Tools for Determining the Sizes of Tables and Indexes
	Effects of Data Modifications on Object Sizes
	Using optdiag to Display Object Sizes
	Advantages of optdiag
	Disadvantages of optdiag

	Using sp_spaceused to Display Object Size
	Table 15-1: sp_spaceused output
	Advantages of sp_spaceused
	Disadvantages of sp_spaceused

	Using sp_estspace to Estimate Object Size
	Advantages of sp_estspace
	Disadvantages of sp_estspace

	Using Formulas to Estimate Object Size
	Factors That Can Affect Storage Size
	Storage Sizes for Datatypes
	Table 15-2: Storage sizes for Adaptive Server datatypes

	Tables and Indexes Used in the Formulas
	Calculating Table and Clustered Index Sizes for Allpages-Locked Tables
	Step 1: Calculate the Data Row Size
	Fixed-Length Columns Only
	Some Variable-Length Columns

	Step 2: Compute the Number of Data Pages
	Step 3: Compute the Size of Clustered Index Rows
	Fixed-Length Columns Only
	Some Variable-Length Columns

	Step 4: Compute the Number of Clustered Index Pages
	Step 5: Compute the Total Number of Index Pages
	Step 6: Calculate Allocation Overhead and Total Pages
	Total Pages Needed

	Step 7: Calculate the Size of the Leaf Index Row
	Fixed-Length Keys Only
	Some Variable-Length Keys

	Step 8: Calculate the Number of Leaf Pages in the Index
	Step 9: Calculate the Size of the Non-Leaf Rows
	Step 10: Calculate the Number of Non-Leaf Pages
	Step 11: Calculate the Total Number of Non-Leaf Index Pages
	Step 12: Calculate Allocation Overhead and Total Pages
	Total Pages Needed

	Calculating the Sizes of Data-Only-Locked Tables
	Step 1: Calculate the Data Row Size
	Fixed-Length Columns Only
	Some Variable-Length Columns

	Step 2: Compute the Number of Data Pages
	Step 3: Calculate Allocation Overhead and Total Pages
	Allocation Overhead
	Total Pages Needed

	Step 4: Calculate the Size of the Index Row
	Fixed-Length Keys Only
	Some Variable-Length Keys

	Step 5: Calculate the Number of Leaf Pages in the Index
	Step 6: Calculate the Number of Non-Leaf Pages in the Index
	Step 7: Calculate the Total Number of Non-Leaf Index Pages
	Step 8: Calculate Allocation Overhead and Total Pages
	Total Pages Needed

	Other Factors Affecting Object Size
	Effects of Space Management Properties
	fillfactor
	exp_row_size
	reservepagegap
	max_rows_per_page

	Using Average Sizes for Variable Fields

	Very Small Rows
	LOB Pages
	Table 15-3: Estimated additional pages for pointer information in LOB columns

	Advantages of Using Formulas to Estimate Object Size
	Disadvantages of Using Formulas to Estimate Object Size

	CHAPTER 16 Maintenance Activities and Performance
	Running reorg on tables and indexes
	Creating and maintaining indexes
	Configuring Adaptive Server to speed sorting
	Dumping the database after creating an index
	Creating an index on sorted data
	Table 16-1: Using options for creating a clustered index

	Maintaining index and column statistics
	Rebuilding indexes
	Speeding index creation with sorted_data

	Creating or altering a database
	Backup and recovery
	Local backups
	Remote backups
	Online backups
	Using thresholds to prevent running out of log space
	Dump striping
	Minimizing recovery time
	Recovery order

	Bulk copy
	Parallel bulk copy
	Batches and bulk copy
	Slow bulk copy
	Improving bulk copy performance
	Replacing the data in a large table
	Adding large amounts of data to a table
	Using partitions and multiple bulk copy processes
	Impacts on other users

	Database consistency checker
	Using dbcc tune (cleanup)
	Determining the space available for maintenance activities
	Overview of space requirements
	Tools for checking space usage and space available
	Checking space used for tables and indexes
	Checking space on segments
	Checking space requirements for space management properties
	Space management properties applied to the table
	Space management properties applied to the index

	Estimating the effects of space management properties
	Table 16-2: Effects of space management properties on space use
	Table 16-3: Converting max_rows_per_page to exp_row_size

	If there is not enough space

